DOI QR코드

DOI QR Code

Association of Cytotoxic T-lymphocyte Antigen-4 Polymorphisms with Malignant Bone Tumors Risk: A Meta-analysis

  • Zhang, Chao (Department of orthopaedics, The First Hospital of Lanzhou University) ;
  • Hou, Wei-Hua (Department of orthopaedics, The First Hospital of Lanzhou University) ;
  • Ding, Xuan-Xi (Department of orthopaedics, The First Hospital of Lanzhou University) ;
  • Wang, Xiong (Department of orthopaedics, The First Hospital of Lanzhou University) ;
  • Zhao, Hui (Department of orthopaedics, The First Hospital of Lanzhou University) ;
  • Han, Xing-Wen (Department of orthopaedics, The First Hospital of Lanzhou University) ;
  • Wang, Wen-Ji (Department of orthopaedics, The First Hospital of Lanzhou University)
  • 발행 : 2016.08.01

초록

Background: Previous studies have assessed the association between the Cytotoxic T-lymphocyte Antigen-4(CTLA-4) polymorphism with the risk of malignant bone tumor, but the conclusions were inconsistent. We aimed to clarify association of cytotoxic T-lymphocyte antigen-4 polymorphisms with malignant bone tumors risk by performing a meta-analysis. Materials and Methods: The databases including PubMed, EMBase databases and the Cochrane Library were searched to identify the eligible studies prior to January 30 2016. Odds ratio (OR) with 95% confidence interval (95%CI) were used to estimate the strengths of the association between the CTLA-4 polymorphism and the malignant bone tumor risks. The meta-analysis was performed by STATA 12.0. Results: Four individual studies with a total of 1003 cases with malignant bone tumor and 1162 controls were included in our meta-analysis. The results of meta-analysis on those data demonstrated that CTLA-4 +49G>A polymorphism was associated with the risk of Ewing's sarcoma and osteosarcoma strongly (A vs. G: OR=1.36, 95%CI:1.20-1.54, p=0.000; AA+AG vs. GG: OR=1.35, 95%CI:1.14-1.61, p=0.001; AA vs. GG: OR=2.24, 95%CI:1.67-2.99, p=0.000; AA vs. AG+GG: OR=2.00, 95%CI:1.53-2.62, p=0.000), but CTLA-4 -318C/T polymorphism was not associated with the risk of malignant bone tumor (C vs. T: OR=0.76, 95%CI:0.76-1.08, p= 0.262; CC+CT vs. TT: OR=0.70, 95%CI:0.41-1.20, p= 0.198; CC vs. TT: OR=0.69, 95%CI:0.40-1.19, p= 0.183; CC vs. CT+TT: OR=0.92, 95%CI:0.75-1.13, p= 0.419). Subgroup analysis showed that there are significantly positive correlations between CTLA-4 +49G>A polymorphism and increased risks of malignant bone tumors in large size of sample (A vs. G: OR=1.347, 95%CI: 1.172,1.548, p=0.000; AA vs. GG: OR=2.228, 95%CI: 1.608,3.085, p=0.000), Ewing's Sarcoma or Osteosarcoma (A vs. G: OR=1.361, 95%CI: 1.201,1.540, p=0.000; AA vs. GG: OR=2.236, 95%CI: 1.674,2.986, p=0.000), and PCR-RFLP or Sequencing(A vs. G: OR=1.361, 95%CI: 1.201,1.540, p=0.000; AA vs. GG: OR=2.236, 95%CI: 1.674,2.986, p=0.000), but CTLA-4 -318C/T polymorphism was not associated with the risk of malignant bone tumors in diagnosis, genotype method, and sample size (all p>0.05). Conclusions: CTLA-4 +49A/G variant was associated with an increased risk of developing the malignant bone tumors, such as Ewing's sarcoma and osteosarcoma. However, it failed to show the association between CTLA-4 -318C/T polymorphism and the risk of malignant bone tumors. Future large-scale studies remain to be done to confirm our conclusions.

키워드

참고문헌

  1. Alfadhli S, Almutawa Q, Abbas J M K, et al (2013). Association of Hashimoto's thyroiditis with cytotoxic T lymphocyteassociated antigen-4 (CTLA-4) and inducible co-stimulator (ICOS) genes in a Kuwaiti population. Endocrine, 43, 666-77. https://doi.org/10.1007/s12020-012-9823-8
  2. Balamuth N J, Womer R B (2010). Ewing's sarcoma. Lancet Oncol, 11, 184-192. https://doi.org/10.1016/S1470-2045(09)70286-4
  3. Benhatchi K, Jochmanova I, Habalova V, et al (2011). CTLA4 exon1 A49G polymorphism in Slovak patients with rheumatoid arthritis and Hashimoto thyroiditis-results and the review of the literature. Clinical Rheumatol, 30, 1319-24. https://doi.org/10.1007/s10067-011-1752-z
  4. Bian Z, He Q, Wang X, et al (2014). Association of genetic polymorphisms with osteosarcoma risk: a meta-analysis. Int J Clin Exp Med, 8, 8317-28.
  5. Bielack S, Carrle D, Casali P G (2009). Osteosarcoma: ESMO clinical recommendations for diagnosis, treatment and follow-up. Ann Oncol, 20, 137-9. https://doi.org/10.1093/annonc/mdn526
  6. Feng D, Yang X, Li S, et al (2016). Cytotoxic T-lymphocyte antigen-4 genetic variants and risk of Ewing's sarcoma. Genet Test Mol Biom, 17, 458-63.
  7. Gil M A, Maside C, Cuello C, et al (2015). Osteosarcoma of the Spine: Prognostic Variables for Local Recurrence and Overall Survival, A Multicenter Ambispective Study. Mol Reprod Dev, 5, 651-63.
  8. Hao Q, Weifeng T, Pengfei Y, et al (2013). Cytotoxic T-lymphocyte associated antigen 4 polymorphism and hashimoto's thyroiditis susceptibility: a meta-analysis. Endocrine, 45, 198-205.
  9. He L, Deng T, Luo H S (2014). Association between cytotoxic T-lymphocyte antigen-4 +49A/G polymorphism and colorectal cancer risk: a meta-analysis. Int J Clin Exp Med, 8, 3752-60.
  10. Hironori U, Howson J M M, Laura E, et al (2003). Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature, 423, 506-11. https://doi.org/10.1038/nature01621
  11. Huang H J, Angelo L S, Rodon J, et al (2011). R1507, an antiinsulin- like growth factor-1 receptor (IGF-1R) antibody, and EWS/FLI-1 siRNA in Ewing's sarcoma: convergence at the IGF/IGFR/Akt axis. PloS one, 6, 26060. https://doi.org/10.1371/journal.pone.0026060
  12. Kager L, Zoubek A, Pötschger U, et al (2003). Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J Clin Oncol, 21, 2011-8. https://doi.org/10.1200/JCO.2003.08.132
  13. Lang C, Chen L, Li S (2012). Cytotoxic T-lymphocyte antigen-4+ 49G/A polymorphism and susceptibility to pancreatic cancer[J]. Dna Cell Biol, 31, 683-7. https://doi.org/10.1089/dna.2011.1417
  14. Lesterhuis W J, Salmons J, Nowak A K, et al (2013). Synergistic effect of CTLA-4 blockade and cancer chemotherapy in the induction of anti-tumor immunity. PloS one, 8, 61895. https://doi.org/10.1371/journal.pone.0061895
  15. Liu X, Yang B, Ren H, et al (2015). Current Evidence On the Cytotoxic T-Lymphocyte Antigen 4+49G>A polymorphism and digestive system cancer risks: a meta-analysis involving 11, 923 subjects. Meta Gene, 6, 105-8. https://doi.org/10.1016/j.mgene.2015.09.005
  16. Lo K L, Mertz D, Loeb M (2014). Newcastle-Ottawa Scale: comparing reviewers' to authors' assessments. Bmc Med Res Method, 14, 45. https://doi.org/10.1186/1471-2288-14-45
  17. Mackintosh C, Ordonez J L, Garcia-Dominguez D J, et al (2012). 1q gain and CDT2 overexpression underlie an aggressive and highly proliferative form of Ewing sarcoma. Oncogene, 31, 1287-98. https://doi.org/10.1038/onc.2011.317
  18. Miller B J, Lynch C F, Buckwalter J A (2013). Conditional survival is greater than overall survival at diagnosis in patients with osteosarcoma and Ewing's sarcoma. Clin Orthop Relat R, 471, 3398-404. https://doi.org/10.1007/s11999-013-3147-8
  19. Postel-Vinay S, Veron A S, Tirode F, et al (2012). Common variants near TARDBP and EGR2 are associated with susceptibility to Ewing sarcoma. Nat Genet, 44, 323-7. https://doi.org/10.1038/ng.1085
  20. Rachel W, Carroll R J (2014). Testing Hardy-Weinberg equilibrium with a simple root-mean-square statistic. Biostatistics, 15, 74-86. https://doi.org/10.1093/biostatistics/kxt028
  21. Salvi S, Fontana V, Boccardo S, et al (2012). Evaluation of CTLA-4 expression and relevance as a novel prognostic factor in patients with non-small cell lung cancer. Cancer Immunol Immun, 61, 1463-72. https://doi.org/10.1007/s00262-012-1211-y
  22. Silva D S B S, Sawitzki F R, De Toni E C, et al (2012). Ewing's sarcoma: analysis of single nucleotide polymorphism in the EWS gene. Gene, 509, 263-6. https://doi.org/10.1016/j.gene.2012.08.012
  23. Sun T, Zhou Y M, Hu Z, et al (2008). Functional genetic variations in cytotoxic T-lymphocyte antigen 4 and susceptibility to multiple types of cancer. Cancer Res, 68, 7025-34. https://doi.org/10.1158/0008-5472.CAN-08-0806
  24. Wang W, Wang J, Song H, et al (2011). Cytotoxic T-lymphocyte antigen-4 +49G/A polymorphism is associated with increased risk of osteosarcoma. Genet Test Mol Biom, 15, 503-6. https://doi.org/10.1089/gtmb.2010.0264
  25. Yang L, Zhimin H, Dapeng F, et al (2011). Cytotoxic T-lymphocyte antigen-4 polymorphisms and susceptibility to osteosarcoma. Dna Cell Biol, 30, 1051-5. https://doi.org/10.1089/dna.2011.1269
  26. Yang M, Sun T, Zhou Y, et al (2012). The functional cytotoxic T lymphocyte–associated Protein 4 49G-to-A genetic variant and risk of pancreatic cancer. Cancer, 118, 4681-86. https://doi.org/10.1002/cncr.27455
  27. Yang S, Wang C, Zhou Y, et al (2012). Cytotoxic T-lymphocyte antigen-4 polymorphisms and susceptibility to Ewing's sarcoma. Genet Test Mol Biom, 16, 1236-40. https://doi.org/10.1089/gtmb.2012.0129
  28. Yu F, Miao J (2013). Significant association between cytotoxic T lymphocyte antigen 4 +49G>A polymorphism and risk of malignant bone tumors. Tumour Biol, 34, 3371-5. https://doi.org/10.1007/s13277-013-0908-7
  29. Yuan J, Ginsberg B, Page D, et al (2011). CTLA-4 blockade increases antigen-specific CD8+ T cells in prevaccinated patients with melanoma: three cases. Cancer Immunol Immun, 60, 1137-46. https://doi.org/10.1007/s00262-011-1011-9
  30. Zhang Y, Zhang J, Yao D, et al (2011). Polymorphisms in the cytotoxic T-lymphocyte antigen 4 gene and cancer risk: a meta-analysis. Cancer, 117, 4312-24. https://doi.org/10.1002/cncr.25979