DOI QR코드

DOI QR Code

Anti-Oxidant, Pro-Oxidant and Anti-Inflammatory Effects of Unpolished Rice Relevant to Colorectal Cancer

  • Published : 2016.12.01

Abstract

Colorectal cancer (CRC) is a major worldwide health problem owing to its high prevalence and mortality rates. Carcinogenesis in the colon is a multistage and multifactorial process. An imbalance between free radical exposure and anti-oxidant defense systems may leads to oxidative stress and attack of macromolecules which can alter signal transduction pathways and gene expression. Consequently, oxidative damage can lead to cellular dysfunction and contribute to pathophysiological processes in a variety of diseases including CRC. One factor tightly associated with CRC is chronic inflammation, which can be present from the earliest stage of tumor onset. Unpolished rice is an attractive chemoprevention in CRC due to their anti-oxidant and anti-inflammatory activities. The aim of this paper is to review evidence linking oxidative stress and inflammation to CRC and to provide essential background information for understanding future research on oxidative stress and inflammation on CRC. Mechanisms of action of unpolished rice in CRC carcinogenesis are also discussed.

Keywords

References

  1. Archer MC, Bruce WR, Chan CC, et al (1992). Aberrant crypt foci and microadenoma as markers for colon cancer. Environ Health Perspect, 98, 195-7.
  2. Balkwill F, Mantovani A (2001). Inflammation and cancer: back to Virchow?. Lancet, 357, 539-45. https://doi.org/10.1016/S0140-6736(00)04046-0
  3. Banjerdpongchai R, Wudtiwai B, Sringarm K (2014). Cytotoxic and apoptotic-inducing effects of purple rice extracts and chemotherapeutic drugs on human cancer cell lines. Asian Pac J Cancer Prev, 14, 6541-8.
  4. Bastide NM, Pierre FH, Corpet DE (2011). Heme iron from meat and risk of colorectal cancer: a meta-analysis and a review of the mechanisms involved. Cancer Prev Res (Phila), 4, 177-84. https://doi.org/10.1158/1940-6207.CAPR-10-0113
  5. Bhattacharyya A, Chattopadhyay R, Mitra S, et al (2014). Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev, 94, 329-54. https://doi.org/10.1152/physrev.00040.2012
  6. Bird RP (1995). Role of aberrant crypt foci in understanding the pathogenesis of colon cancer. Cancer Lett, 93, 55-71. https://doi.org/10.1016/0304-3835(95)03788-X
  7. Bird RP, Good CK (2000). The significance of aberrant crypt foci in understanding the pathogenesis of colon cancer. Toxicol Lett, 112, 395-402.
  8. Bretthauer M (2010). Evidence for colorectal cancer screening. Best Pract Res Clin Gastroenterol, 24, 417-25. https://doi.org/10.1016/j.bpg.2010.06.005
  9. Brown JR, DuBois RN (2005). COX-2: a molecular target for colorectal cancer prevention. J Clin Oncol, 23, 2840-55. https://doi.org/10.1200/JCO.2005.09.051
  10. Candela M, Turroni S, Biagi E, et al (2014). Inflammation and colorectal cancer, when microbiota-host mutualism breaks. World J Gastroenterol, 20, 908-22. https://doi.org/10.3748/wjg.v20.i4.908
  11. Cappell MS (2005). The pathophysiology, clinical presentation, and diagnosis of colon cancer and adenomatous polyps. Med Clin North Am, 89, 1-42. https://doi.org/10.1016/j.mcna.2004.08.011
  12. Center MM, Jemal A, Smith RA, et al (2009). Worldwide variations in colorectal cancer. CA Cancer J Clin, 59, 366-78. https://doi.org/10.3322/caac.20038
  13. Chen LJ, Lee DS, Song ZP, et al (2004). Gene Flow from Cultivated Rice (Oryza sativa) to its Weedy and Wild Relatives. Ann Bot, 93, 67-73. https://doi.org/10.1093/aob/mch006
  14. Chiang AN, Wu HL, Yeh HI, et al (2006). Antioxidant effects of black rice extract through the induction of superoxide dismutase and catalase activities. Lipids, 41, 797-803. https://doi.org/10.1007/s11745-006-5033-6
  15. Chien CC, Wu MS, Shen SC, et al (2014). Activation of JNK contributes to evodiamine-induced apoptosis and G(2)/M arrest in human colorectal carcinoma cells: A structureactivity study of evodiamine. PLoS One, 9.
  16. Chindaprasirt J, Sookprasert A, Wirasorn K, et al (2012). Cost of colorectal cancer care in hospitalized patients of Thailand. J Med Assoc Thai, 95, 196-200.
  17. Chung YC, Chang YF (2003). Serum interleukin-6 levels reflect the disease status of colorectal cancer. J Surg Oncol, 83, 222-6. https://doi.org/10.1002/jso.10269
  18. Cui G, Florholmen J (2008). Polarization of cytokine profile from Th1 into Th2 along colorectal adenoma-carcinoma sequence: implications for the biotherapeutic target?. Inflamm Allergy Drug Targets, 7, 94-7. https://doi.org/10.2174/187152808785107589
  19. Dai J, Mumper RJ (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15, 7313-52. https://doi.org/10.3390/molecules15107313
  20. Dayem AA, Choi HY, Kim JH, et al (2010). Role of oxidative stress in stem, cancer, and cancer stem cells. Cancers (Basel), 2, 859-84. https://doi.org/10.3390/cancers2020859
  21. De Vita F, Orditura M, Lieto E, et al (2004). Elevated perioperative serum vascular endothelial growth factor levels in patients with colon carcinoma. Cancer, 100, 270-8. https://doi.org/10.1002/cncr.11911
  22. de Waal Malefyt R, Abrams J, Bennett B, et al (1991). Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med, 174, 1209-20. https://doi.org/10.1084/jem.174.5.1209
  23. Dennis KL, Blatner NR, Gounari F, et al (2013). Current status of interleukin-10 and regulatory T-cells in cancer. Curr Opin Oncol, 25, 637-45. https://doi.org/10.1097/CCO.0000000000000006
  24. Fleming M, Ravula S, Tatishchev SF, et al (2012). Colorectal carcinoma: Pathologic aspects. J Gastrointest Oncol, 3, 153-73.
  25. Franco R, Sanchez-Olea R, Reyes-Reyes EM, et al (2009). Environmental toxicity, oxidative stress and apoptosis: menage a trois. Mutat Res, 674, 3-22. https://doi.org/10.1016/j.mrgentox.2008.11.012
  26. Gambhir S, Vyas D, Hollis M, et al (2015). Nuclear factor kappa B role in inflammation associated gastrointestinal malignancies. World J Gastroenterol, 21, 3174-83. https://doi.org/10.3748/wjg.v21.i11.3174
  27. Ge S, Sang T, Lu BR, et al (1999). Phylogeny of rice genomes with emphasis on origins of allotetraploid species. Proc Natl Acad Sci U S A, 96, 14400-5. https://doi.org/10.1073/pnas.96.25.14400
  28. Greten FR, Eckmann L, Greten TF, et al (2004). IKKbeta links inflammation and tumorigenesis in a mouse model of colitisassociated cancer. Cell, 118, 285-96. https://doi.org/10.1016/j.cell.2004.07.013
  29. Guha P, Dey A, Sen R, et al (2011). Intracellular GSH depletion triggered mitochondrial Bax translocation to accomplish resveratrol-induced apoptosis in the U937 cell line. J Pharmacol Exp Ther, 336, 206-14. https://doi.org/10.1124/jpet.110.171983
  30. Haggar FA, Boushey RP (2009). Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg, 22, 191-7. https://doi.org/10.1055/s-0029-1242458
  31. Halliwell B (2007). Dietary polyphenols: good, bad, or indifferent for your health?. Cardiovasc Res, 73, 341-7. https://doi.org/10.1016/j.cardiores.2006.10.004
  32. Henderson AJ, Ollila CA, Kumar A, et al (2012). Chemopreventive properties of dietary rice bran: current status and future prospects. Adv Nutr, 3, 643-53. https://doi.org/10.3945/an.112.002303
  33. Holmgren A, Johansson C, Berndt C, et al (2005). Thiol redox control via thioredoxin and glutaredoxin systems. Biochem Soc Trans, 33, 1375-7.
  34. Hyun JW, Chung HS (2004). Cyanidin and Malvidin from Oryza sativa cv. Heugjinjubyeo mediate cytotoxicity against human monocytic leukemia cells by arrest of G(2)/M phase and induction of apoptosis. J Agric Food Chem, 52, 2213-7. https://doi.org/10.1021/jf030370h
  35. Itoh M, Nishibori N, Sagara T, et al (2012). Extract of fermented brown rice induces apoptosis of human colorectal tumor cells by activating mitochondrial pathway. Phytother Res, 26, 1661-6. https://doi.org/10.1002/ptr.4631
  36. Iyer A, Hatta M, Usman R, et al (2007). Serum levels of interferon-gamma, tumour necrosis factor-alpha, soluble interleukin-6R and soluble cell activation markers for monitoring response to treatment of leprosy reactions. Clin Exp Immunol, 150, 210-6. https://doi.org/10.1111/j.1365-2249.2007.03485.x
  37. Jacobs DR, Steffen LM (2003). Nutrients, foods, and dietary patterns as exposures in research: a framework for food synergy. Am J Clin Nutr, 78, 508-13. https://doi.org/10.1093/ajcn/78.3.508S
  38. Jiang W, Yu X, Ren G (2013). Inhibition effects of black rice pericarp extracts on cell proliferation of PC-3 cells. Wei Sheng Yan Jiu, 42, 474-7.
  39. Joubert E, Winterton P, Britz TJ, et al (2005). Antioxidant and pro-oxidant activities of aqueous extracts and crude polyphenolic fractions of rooibos (Aspalathus linearis). J Agric Food Chem, 53, 10260-7. https://doi.org/10.1021/jf051355a
  40. Kantola T, Klintrup K, Vayrynen JP, et al (2012). Stagedependent alterations of the serum cytokine pattern in colorectal carcinoma. Br J Cancer, 107, 1729-36. https://doi.org/10.1038/bjc.2012.456
  41. Kawasaki T, Nosho K, Ohnishi M, et al (2007). Correlation of beta-catenin localization with cyclooxygenase-2 expression and CpG island methylator phenotype (CIMP) in colorectal cancer. Neoplasia, 9, 569-77. https://doi.org/10.1593/neo.07334
  42. Kazem A, Sayed KE, Kerm YE (2014). Prognostic significance of COX-2 and $\beta$-catenin in colorectal carcinoma. Alexandria Med J, 50, 211-20. https://doi.org/10.1016/j.ajme.2013.05.007
  43. Kelly MR, Xu J, Alexander KE, et al (2001). Disparate effects of similar phenolic phytochemicals as inhibitors of oxidative damage to cellular DNA. Mutat Res, 485, 309-18. https://doi.org/10.1016/S0921-8777(01)00066-0
  44. Khadem S, Marles RJ (2010). Monocyclic phenolic acids; hydroxy- and polyhydroxybenzoic acids: occurrence and recent bioactivity studies. Molecules, 15, 7985-8005. https://doi.org/10.3390/molecules15117985
  45. Khansari N, Shakiba Y, Mahmoudi M (2009). Chronic inflammation and oxidative stress as a major cause of agerelated diseases and cancer. Recent Pat Inflamm Allergy Drug Discov, 3, 73-80. https://doi.org/10.2174/187221309787158371
  46. Kim YS, Milner JA (2007). Dietary modulation of colon cancer risk. J Nutr, 137, 2576-9. https://doi.org/10.1093/jn/137.11.2576S
  47. King A, Young G (1999). Characteristics and occurrence of phenolic phytochemicals. J Am Diet Assoc, 99, 213-8. https://doi.org/10.1016/S0002-8223(99)00051-6
  48. Kinugasa T, Akagi Y (2016). Status of colitis-associated cancer in ulcerative colitis. World J Gastrointest Oncol, 8, 351-7. https://doi.org/10.4251/wjgo.v8.i4.351
  49. Kinzler KW, Vogelstein B (1996). Lessons from hereditary colorectal cancer. Cell, 87, 159-70. https://doi.org/10.1016/S0092-8674(00)81333-1
  50. Knupfer H, Preiss R (2010). Serum interleukin-6 levels in colorectal cancer patients--a summary of published results. Int J Colorectal Dis, 25, 135-40. https://doi.org/10.1007/s00384-009-0818-8
  51. Koehne CH, Dubois RN (2004). COX-2 inhibition and colorectal cancer. Semin Oncol, 31, 12-21. https://doi.org/10.1053/S0093-7754(04)00395-1
  52. Kondo S, Toyokuni S, Iwasa Y, et al (1999). Persistent oxidative stress in human colorectal carcinoma, but not in adenoma. Free Radic Biol Med, 27, 401-10. https://doi.org/10.1016/S0891-5849(99)00087-8
  53. Kraus S, Arber N (2009). Inflammation and colorectal cancer. Curr Opin Pharmacol, 9, 405-10. https://doi.org/10.1016/j.coph.2009.06.006
  54. Kundu JK, Surh YJ (2008). Inflammation: gearing the journey to cancer. Mutat Res, 659, 15-30. https://doi.org/10.1016/j.mrrev.2008.03.002
  55. Labieniec M, Gabryelak T (2006). Study of interactions between phenolic compounds and H2O2 or Cu(II) ions in B14 Chinese hamster cells. Cell Biol Int, 30, 761-8. https://doi.org/10.1016/j.cellbi.2006.05.013
  56. Liang T, Zhang X, Xue W, et al (2014). Curcumin induced human gastric cancer BGC-823 cells apoptosis by ROS-mediated ASK1-MKK4-JNK stress signaling pathway. Int J Mol Sci, 15, 15754-65. https://doi.org/10.3390/ijms150915754
  57. Lobo V, Patil A, Phatak A, et al (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev, 4, 118-26. https://doi.org/10.4103/0973-7847.70902
  58. Long LH, Clement MV, Halliwell B (2000). Artifacts in cell culture: rapid generation of hydrogen peroxide on addition of (-)-epigallocatechin, (-)-epigallocatechin gallate, (+)-catechin, and quercetin to commonly used cell culture media. Biochem Biophys Res Commun, 273, 50-3. https://doi.org/10.1006/bbrc.2000.2895
  59. Loo G (2003). Redox-sensitive mechanisms of phytochemicalmediated inhibition of cancer cell proliferation (review). J Nutr Biochem, 14, 64-73. https://doi.org/10.1016/S0955-2863(02)00251-6
  60. Lu H, Ouyang W, Huang C (2006). Inflammation, a key event in cancer development. Mol Cancer Res, 4, 221-33. https://doi.org/10.1158/1541-7786.MCR-05-0261
  61. Luceri C, Caderni G, Sanna A, et al (2002). Red wine and black tea polyphenols modulate the expression of cycloxygenase-2, inducible nitric oxide synthase and glutathione-related enzymes in azoxymethane-induced f344 rat colon tumors. J Nutr, 132, 1376-9. https://doi.org/10.1093/jn/132.6.1376
  62. Mates JM, Segura JA, Alonso FJ, et al (2008). Intracellular redox status and oxidative stress: implications for cell proliferation, apoptosis, and carcinogenesis. Arch Toxicol, 82, 273-99. https://doi.org/10.1007/s00204-008-0304-z
  63. McLellan EA, Bird RP (1988). Aberrant crypts: potential preneoplastic lesions in the murine colon. Cancer Res, 48, 6187-92.
  64. Moghimi-Dehkordi B, Safaee A (2012). An overview of colorectal cancer survival rates and prognosis in Asia. World J Gastrointest Oncol, 4, 71-5. https://doi.org/10.4251/wjgo.v4.i4.71
  65. Moore KW, de Waal Malefyt R, Coffman RL, et al (2001). Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol, 19, 683-765. https://doi.org/10.1146/annurev.immunol.19.1.683
  66. Neergheen VS, Bahorun T, Taylor EW, et al (2010). Targeting specific cell signaling transduction pathways by dietary and medicinal phytochemicals in cancer chemoprevention. Toxicology, 278, 229-41. https://doi.org/10.1016/j.tox.2009.10.010
  67. Noda T, Iwakiri R, Fujimoto K, et al (2001). Induction of mild intracellular redox imbalance inhibits proliferation of CaCo- 2 cells. Faseb j, 15, 2131-9. https://doi.org/10.1096/fj.01-0131com
  68. Norlida AO, Phang KS (2010). Histomorphology of aberrant crypt foci in colorectal carcinoma. Malays J Pathol, 32, 111-6.
  69. Nunez F, Bravo S, Cruzat F, et al (2011). Wnt/beta-catenin signaling enhances cyclooxygenase-2 (COX2) transcriptional activity in gastric cancer cells. PLoS One, 6, e18562. https://doi.org/10.1371/journal.pone.0018562
  70. Obrador E, Navarro J, Mompo J, et al (1997). Glutathione and the rate of cellular proliferation determine tumour cell sensitivity to tumour necrosis factor in vivo. Biochem J, 325, 183-9. https://doi.org/10.1042/bj3250183
  71. Odabasoglu F, Aslan A, Cakir A, et al (2004). Comparison of antioxidant activity and phenolic content of three lichen species. Phytother Res, 18, 938-41. https://doi.org/10.1002/ptr.1488
  72. Okarter N, Liu RH (2010). Health benefits of whole grain phytochemicals. Crit Rev Food Sci Nutr, 50, 193-208. https://doi.org/10.1080/10408390802248734
  73. Pai R, Soreghan B, Szabo IL, et al (2002). Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat Med, 8, 289-93. https://doi.org/10.1038/nm0302-289
  74. Pan MH, Lai CS, Wu JC, et al (2011). Molecular mechanisms for chemoprevention of colorectal cancer by natural dietary compounds. Mol Nutr Food Res, 55, 32-45. https://doi.org/10.1002/mnfr.201000412
  75. Pandey KB, Rizvi SI (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxid Med Cell Longev, 2, 270-8. https://doi.org/10.4161/oxim.2.5.9498
  76. Pandurangan AK (2013). Potential targets for prevention of colorectal cancer: a focus on PI3K/Akt/mTOR and Wnt pathways. Asian Pac J Cancer Prev, 14, 2201-5. https://doi.org/10.7314/APJCP.2013.14.4.2201
  77. Pandurangan AK, Dharmalingam P, Ananda Sadagopan SK, et al (2012). Effect of luteolin on the levels of glycoproteins during azoxymethane-induced colon carcinogenesis in mice. Asian Pac J Cancer Prev, 13, 1569-73. https://doi.org/10.7314/APJCP.2012.13.4.1569
  78. Pandurangan AK, Esa NM (2013). Dietary non-nutritive factors in targeting of regulatory molecules in colorectal cancer: an update. Asian Pac J Cancer Prev, 14, 5543-52. https://doi.org/10.7314/APJCP.2013.14.10.5543
  79. Peddareddigari VG, Wang D, Dubois RN (2010). The tumor microenvironment in colorectal carcinogenesis. Cancer Microenviron, 3, 149-66. https://doi.org/10.1007/s12307-010-0038-3
  80. Perse M (2013). Oxidative stress in the pathogenesis of colorectal cancer: cause or consequence?. Biomed Res Int, 2013, 725710.
  81. Pham-Huy LA, He H, Pham-Huy C (2008). Free radicals, antioxidants in disease and health. Int J Biomed Sci, 4, 89-96.
  82. Philip M, Rowley DA, Schreiber H (2004). Inflammation as a tumor promoter in cancer induction. Semin Cancer Biol, 14, 433-9. https://doi.org/10.1016/j.semcancer.2004.06.006
  83. Poljsak B, Dahmane R (2012). Free radicals and extrinsic skin aging. Dermatol Res Pract, 2012, 135206.
  84. Porta C, Larghi P, Rimoldi M, et al (2009). Cellular and molecular pathways linking inflammation and cancer. Immunobiology, 214, 761-77. https://doi.org/10.1016/j.imbio.2009.06.014
  85. Rajamanickam S, Agarwal R (2008). Natural products and colon cancer: current status and future prospects. Drug Dev Res, 69, 460-71. https://doi.org/10.1002/ddr.20276
  86. Rakoff-Nahoum S (2006). Why cancer and inflammation? Yale J Biol Med, 79, 123-30.
  87. Raskov H, Pommergaard HC, Burcharth J, et al (2014). Colorectal carcinogenesis-update and perspectives. World J Gastroenterol, 20, 18151-64. https://doi.org/10.3748/wjg.v20.i48.18151
  88. Rattanachitthawat S, Suwannalert P, Riengrojpitak S, et al (2010). Phenolic content and antioxidant activities in red unpolished Thai rice prevents oxidative stress in rats. J Med Plants Res, 4, 796-801.
  89. Reungpatthanaphong S, Chaiyasut C, Sirilun S, et al (2016). Unpolished thai rice prevents Aberrant Crypt Foci Formation through the Invovement of catenin and COX2 Expression in AzoxymethaneTreated Rats. Asian Pac J Cancer Prev, 17, 3551-8.
  90. Rice-Evans CA, Miller NJ, Paganga G (1996). Structureantioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med, 20, 933-56. https://doi.org/10.1016/0891-5849(95)02227-9
  91. Rizzo AM, Berselli P, Zava S, et al (2010). Endogenous antioxidants and radical scavengers. Adv Exp Med Biol, 698, 52-67.
  92. Roncucci L, Medline A, Bruce WR (1991). Classification of aberrant crypt foci and microadenomas in human colon. Cancer Epidemiol Biomarkers Prev, 1, 57-60.
  93. Sarris AH, Kliche KO, Pethambaram P, et al (1999). Interleukin-10 levels are often elevated in serum of adults with Hodgkin's disease and are associated with inferior failure-free survival. Ann Oncol, 10, 433-40. https://doi.org/10.1023/A:1008301602785
  94. Saxena A, Baliga MS, Ponemone V, et al (2013). Mucus and adiponectin deficiency: role in chronic inflammation-induced colon cancer. Int J Colorectal Dis, 28, 1267-79. https://doi.org/10.1007/s00384-013-1664-2
  95. Schatzkin A, Park Y, Leitzmann MF, et al (2008). Prospective study of dietary fiber, whole grain foods, and small intestinal cancer. Gastroenterology, 135, 1163-7. https://doi.org/10.1053/j.gastro.2008.07.015
  96. Sengupta N, Yee E, Feuerstein JD (2016). Colorectal Cancer Screening in Inflammatory Bowel Disease. Dig Dis Sci, 61, 980-9. https://doi.org/10.1007/s10620-015-3979-z
  97. Shafie NH, Mohd Esa N, Ithnin H, et al (2013). Preventive inositol hexaphosphate extracted from rice bran inhibits colorectal cancer through involvement of Wnt/beta-catenin and COX-2 pathways. Biomed Res Int, 2013, 681027.
  98. Shahidi F, Wanasundara PK (1992). Phenolic antioxidants. Crit Rev Food Sci Nutr, 32, 67-103. https://doi.org/10.1080/10408399209527581
  99. Shao Y, Xu F, Sun X, et al (2014). Phenolic acids, anthocyanins, and antioxidant capacity in rice (Oryza sativa L.) grains at four stages of development after flowering. Food Chem, 143, 90-6. https://doi.org/10.1016/j.foodchem.2013.07.042
  100. Siegel RL, Miller KD, Jemal A (2015). Cancer statistics, 2015. CA Cancer J Clin, 65, 5-29. https://doi.org/10.3322/caac.21254
  101. Slattery ML, Edwards SL, Boucher KM, et al (1999). Lifestyle and colon cancer: an assessment of factors associated with risk. Am J Epidemiol, 150, 869-77. https://doi.org/10.1093/oxfordjournals.aje.a010092
  102. Sompong R, Siebenhandl-Ehn S, Linsberger-Martin G, et al (2011). Physicochemical and antioxidative properties of red and black rice varieties from Thailand, China and Sri Lanka. Food Chem, 124, 132-40. https://doi.org/10.1016/j.foodchem.2010.05.115
  103. Soria JC, Moon C, Kemp BL, et al (2003). Lack of interleukin-10 expression could predict poor outcome in patients with stage I non-small cell lung cancer. Clin Cancer Res, 9, 1785-91.
  104. Sporn MB, Suh N (2000). Chemoprevention of cancer. Carcinogenesis, 21, 525-30. https://doi.org/10.1093/carcin/21.3.525
  105. Sturlan S, Oberhuber G, Beinhauer BG, et al (2001). Interleukin- 10-deficient mice and inflammatory bowel disease associated cancer development. Carcinogenesis, 22, 665-71. https://doi.org/10.1093/carcin/22.4.665
  106. Summart R, Chewonarin T (2014). Purple rice extract supplemented diet reduces DMH- induced aberrant crypt foci in the rat colon by inhibition of bacterial beta-glucuronidase. Asian Pac J Cancer Prev, 15, 749-55. https://doi.org/10.7314/APJCP.2014.15.2.749
  107. Surh YJ (2003). Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer, 3, 768-80. https://doi.org/10.1038/nrc1189
  108. Suwannalert P, Rattanachitthawat S (2011). High levels of phytophenolics and antioxidant activities in Oryza Sativa - unpolished Thai rice strain of Leum Phua. Trop J Pharm Res, 10, 431-6.
  109. Suwannalert P, Rattanachitthawat S, Chaiyasut C, et al (2010). High levels of 25-hydroxyvitamin D 3 [25(OH)D 3] and $\alpha$-tocopherol prevent oxidative stress in rats that consume Thai brown rice. J Med Plants Res, 4, 120-4.
  110. Takahashi M, Wakabayashi K (2004). Gene mutations and altered gene expression in azoxymethane-induced colon carcinogenesis in rodents. Cancer Sci, 95, 475-80. https://doi.org/10.1111/j.1349-7006.2004.tb03235.x
  111. Tammasakchai A, Chaiyasut C, Riengrojpitak S, et al (2015). Unpolished Thai rice prevents ACF formation and dysplastic progression in AOM-induced rats and induces apoptosis through redox alteration in CaCo-2 cells. Asian Pac J Cancer Prev, 16, 2827-32. https://doi.org/10.7314/APJCP.2015.16.7.2827
  112. Tammasakchai A, Reungpatthanaphong S, Chaiyasut C, et al (2012). Red strain oryza sativa-unpolished thai rice prevents oxidative stress and colorectal aberrant crypt foci formation in rats. Asian Pac J Cancer Prev, 13, 1929-33. https://doi.org/10.7314/APJCP.2012.13.5.1929
  113. Tan BL, Norhaizan ME, Huynh K, et al (2015). Brewers' rice modulates oxidative stress in azoxymethane-mediated colon carcinogenesis in rats. World J Gastroenterol, 21, 8826-35. https://doi.org/10.3748/wjg.v21.i29.8826
  114. Tan BL, Norhaizan ME, Pandurangan AK, et al (2016). Brewers' rice attenuated aberrant crypt foci developing in colon of azoxymethane-treated rats. Pak J Pharm Sci, 29, 205-12.
  115. Tanaka T (2009). Colorectal carcinogenesis: Review of human and experimental animal studies. J Carcinog, 8, 5. https://doi.org/10.4103/1477-3163.49014
  116. Tanaka T (2012). Preclinical cancer chemoprevention studies using animal model of inflammation-associated colorectal carcinogenesis. Cancers (Basel), 4, 673-700. https://doi.org/10.3390/cancers4030673
  117. Tantamango YM, Knutsen SF, Beeson WL, et al (2011). Foods and food groups associated with the incidence of colorectal polyps: the adventist health study. Nutr Cancer, 63, 565-72. https://doi.org/10.1080/01635581.2011.551988
  118. Terzic J, Grivennikov S, Karin E, et al (2010). Inflammation and colon cancer. Gastroenterology, 138, 2101-14. https://doi.org/10.1053/j.gastro.2010.01.058
  119. Toiyama Y, Miki C, Inoue Y, et al (2010). Loss of tissue expression of interleukin-10 promotes the disease progression of colorectal carcinoma. Surg Today, 40, 46-53. https://doi.org/10.1007/s00595-009-4016-7
  120. Trachootham D, Lu W, Ogasawara MA, et al (2008). Redox regulation of cell survival. Antioxid Redox Signal, 10, 1343-74. https://doi.org/10.1089/ars.2007.1957
  121. Traverso N, Ricciarelli R, Nitti M, et al (2013). Role of glutathione in cancer progression and chemoresistance. Oxid Med Cell Longev, 2013, 972913.
  122. Valavanidis A, Vlachogianni T, Fiotakis K (2009). Tobacco smoke: involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles. Int J Environ Res Public Health, 6, 445-62. https://doi.org/10.3390/ijerph6020445
  123. Visco C, Vassilakopoulos TP, Kliche KO, et al (2004). Elevated serum levels of IL-10 are associated with inferior progression-free survival in patients with Hodgkin's disease treated with radiotherapy. Leuk Lymphoma, 45, 2085-92. https://doi.org/10.1080/10428190410001712234
  124. Waldner MJ, Foersch S, Neurath MF (2012). Interleukin-6-a key regulator of colorectal cancer development. Int J Biol Sci, 8, 1248-53. https://doi.org/10.7150/ijbs.4614
  125. Wang J, Yi J (2008). Cancer cell killing via ROS: to increase or decrease, that is the question. Cancer Biol Ther, 7, 1875-84. https://doi.org/10.4161/cbt.7.12.7067
  126. Watson WH, Cai J, Jones DP (2000). Diet and apoptosis. Annu Rev Nutr, 20, 485-505. https://doi.org/10.1146/annurev.nutr.20.1.485
  127. Westermarck J, Kahari VM (1999). Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J, 13, 781-92. https://doi.org/10.1096/fasebj.13.8.781
  128. Xiao H, Hao X, Simi B, et al (2008). Green tea polyphenols inhibit colorectal aberrant crypt foci (ACF) formation and prevent oncogenic changes in dysplastic ACF in azoxymethane-treated F344 rats. Carcinogenesis, 29, 113-9.
  129. Zhao S, Wu D, Wu P, et al (2015). Serum IL-10 Predicts Worse Outcome in Cancer Patients: A Meta-Analysis. PLoS One, 10, e0139598. https://doi.org/10.1371/journal.pone.0139598
  130. Zhao X, Sun H, Hou A, et al (2005). Antioxidant properties of two gallotannins isolated from the leaves of Pistacia weinmannifolia. Biochim Biophys Acta, 1725, 103-10. https://doi.org/10.1016/j.bbagen.2005.04.015