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Extensional Vibration Analysis of Curved Beams Including Rotatory 
Inertia and Shear Deformation Using DQM
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미분구적법(DQM)을 이용 회전관성 및 전단변형을 포함한 

곡선 보의 신장 진동해석

강기준1*, 박차식1

1호서대학교 공과대학 기계공학부  

Abstract  One of the most efficient procedures for the solution of partial differential equations is the method of 
differential quadrature. The differential quadrature method (DQM) has been applied to a large number of cases to 
overcome the difficulties of complex algorithms of computer programming, as well as the excessive use of storage 
due to the conditions of complex geometry and loading. The in-plane vibrations of curved beams with extensibility 
of the arch axis, including the effects of rotatory inertial and shear deformation, are analyzed by the DQM. The 
fundamental frequencies are calculated for members with various slenderness ratios, shearing flexibilities, boundary 
conditions, and opening angles. The results are compared with the numerical results obtained by other methods for 
cases in which they are available. The DQM gives good mathematical precision even when only a limited number 
of grid points is used, and new results according to diverse variations are also suggested.

Keywords : DQM, Extensional Vibration, New Result, Rotatory Inertial, Shear Deformation  

요  약  편미분방정식의 해를 구하기 위한 효율적인 방법 중의 하나는 미분구적법이다. 복잡한 기하학적 구조 및 하중 은 
컴퓨터 용량을 과도하게 사용할 뿐만 아니라, 복합알고리즘 프로그램을 어렵게 해 이를 극복하기위하여 미분구적법(DQM)
이 많은 분야에 적용되어왔다. 곡선 보의 아크 축 신장에 회전관성 및 전단변형을 포함하여 DQM을 이용 곡선 보의 내 평면 
진동을 해석하였다. 다양한 세장비 및 전단신축성 그리고 경계조건 및 열림 각에 따른 기본진동수를 계산하였다. DQM 결과
는 활용 가능한 다른 수치해석결과와 비교하였다. DQM은 적은 격자점을 사용하고도 정확한 해석을 보여주었고, 다양한 
변경에 따른 새로운 결과 또한 제시하였다.
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1. Introduction

The increasing use of curved beams in buildings, 
vehicles, ships, and aircraft has results in considerable 
effort being directed toward developing an accurate 
method for analyzing the dynamic behavior of such 
structures. Accurate knowledge of the vibration 

response of curved beams is of great importance in 
many engineering applications such as the design of 
machines and structures. 

The earlier investigators into the in-plane vibration 
of rings were Hoppe[1] and Love[2]. Love[2] 
improved on Hoppe's theory by allowing for stretching 
of the ring. Lamb[3] investigated the statics of 
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incomplete ring with various boundary conditions and 
the dynamics of an incomplete free-free ring of small 
curvature. Den Hartog[4] used the Rayleigh-Ritz 
method for finding the lowest natural frequency of 
circular arcs with simply supported or clamped ends, 
and his work was extended by Volterra and Morell[5] 
for the vibrations of arches having center lines in the 
form of cycloids, catenaries, or parabolas. Archer[6] 
carried out for a mathematical study of the in-plane 
inextensional vibrations of an incomplete circular ring 
of small cross section with the basic equations of 
motion as given in Love[2] and gave a prescribed 
time-dependent displacement at the other end for the 
case of clamped ends.  Veletsos et al.[7] used  a theory 
which accurately considered the extensibility of the 
arch axis and the curved beam effect but neglects the 
effects of rotatory inertia and shearing deformation. 
The elementary Bernoulli-Euler equation of motion of 
beams is derived on the assumption that the deflections 
of beams are due to bending only and that both 
transverse shear and rotary inertia are neglected. In 
addition, it is assumed that the center line remains 
unextended during bending, while the bending 
characteristics are ignored when considering the 
extensional behavior. This is recognized as adequate 
for the usual engineering problems. However, for  
beams having large cross-sectional dimensions in 
comparison to their lengths, and for beams in which 
high-frequency modes of vibration are required, the 
Timoshenko theory[8] which takes into account the 
rotary inertia and shear effects gives a better 
approximation to the actual beam behavior. The effects 
of shear deformation and rotary inertia on 
inextensional vibrations of a circular ring was 
considered by Roa and Sundararajan[9]. Recently, Issa 
et al.[10] presented extensional vibrations of 
continuous circular curved beams with rotary inertia 
and shear deformation, and Austin  and Veletsos[11]  
presented free vibrations of circular arches flexible in 
shear, respectively. More recently, Kang and Kim[12] 
analyzed the in-plane extensional vibration of curved 

beams  using DQM neglecting the effects of shear 
deformation,  Kang and Kim[13] studied the 
out-of-plane vibration with shear deformation but not 
considering the extensibility of the arch axis, and 
Kang[14] analyzed the inextensional and extensional 
vibrations of curved beams neglecting the effects of 
rotatory inertial and shear deformation.

A rather efficient alternate procedure for the 
solution of partial differential equations is the method 
of differential quadrature which was introduced by 
Bellman and Casti[15]. This simple direct technique 
can be applied to a large number of cases to 
circumvent the difficulties of programming complex 
algorithms for the computer, as well as excessive use 
of storage.  This method is used in the present work 
to analyze the free in-plane  extensional vibrations of 
curved beams with various slenderness ratio, shearing 
flexibility, boundary conditions, and opening angles 
including the effects of rotatory inertial and shear 
deformation. The results are compared with numerical 
solutions by other methods.

2. Differential Equations

The uniform curved beam considered is shown in 
Fig. 1. A point on the centroidal axis is defined by the 

angle θ, measured from the left support. The 

tangential and radial displacements of the arch axis are 
v and w, respectively. Here a is the radius of the 

centroidal axis, and θ
0
 is the opening angle.      

              

Fig. 1. Coordinate system for curved beam 
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Fig. 2. Curved element subjected to forces

The equilibrium conditions of a circular cured beam 
element, undergoing small undamped in-plane vibration 
as shown in Fig. 2, give[9]



  


 

(1)




 




(2)








 

(3)

      

Where   and M are the  normal force,  internal 

shear force, and bending moment, respectively. Here   

is the bending slope, m is the mass per unit length, 

 is the cross sectional area,  is the time, and I is 

the area moment of inertia of the cross section. The 

total angle  between the deformed and undeformed 
neutral axis may be expressed as[8]

     (4)

Where   is the angular deformation due to shear. 
From the elementary theory of beams, the normal 

force, the bending moment, and shear force are given

  



  (5)

  




(6)

  




   (7)

where E is the Young's modulus of elasticity,  is 

the numerical shape factor of cross-section, and   is 
the shear modulus.

Assume that the beam is undergoing free vibration 
with a frequency  and let

    ,          

   (8)
                

where   ,   is the normal function of 
  ,  is the normal function of  , and 
  is the normal function of  , respectively.

Substituting equations (5), (6), and (7) with equation 
(8) into equations (1), (2), and (3) and omitting the 

common term  yields



″








 ′

   





   (9)






 ′


 ″

 

   


′ 


 (10)











 ′

′″  

   







 (11)

in which each prime denotes one differentiation with 
respect to the angular  coordinate .

Using the length of the arch axis , the radius of 
gyration of the cross section  ,  the non-dimensional 



Extensional Vibration Analysis of Curved Beams Including Rotatory Inertia and Shear Deformation Using DQM

287

frequency parameter , and the dimensionless distance 
coordinate , the equations (9), (10), and (11) can be 
written as








″

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
   (12)
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
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


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     

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
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


 ′
       (13)

 

 







 






 ′     

  








 ″



 




 (14)

where ,  ,  and  are given by, respectively, 

   ,   



 ,  



 (15)

in which each prime denotes one differentiation with 
respect to the dimensionless distance coordinate  
defined as

Y =
θ
θ
0

(16)

Neglecting the effects of rotatory inertia and shear 
deformation, the differential equations can be written 
as[12]




″″




″



 




 ′
 (17)  

                                       




 

 ′




 ″
   (18) 

Neglecting the effects of shear deformation but 
including rotatory inertia, the differential equations can 
be written as[12]




″″




″



 




 ′

  

″




′ (19)




 ′




 ″

    

 ′


 

 

  (20)

The boundary conditions for clamped and simply 
supported ends are, respectively.
                      
           (21)  

  ′     ′    (22)  

3. Differential Quadrature Method

The differential quadrature method (DQM) was 
introduced by Bellman and Casti[15]. By formulating 
the quadrature rule for a derivative as an analogous 
extension of quadrature for integrals in their 
introductory paper, they proposed the differential 
quadrature method as a new technique for the 
numerical solution of initial value problems of ordinary 
and partial differential equations. It was applied for the 
first time to static analysis of structural components by 
Jang et al.[16]. The versatility of the DQM to 
engineering analysis in general and to structural 
analysis in particular is becoming increasingly evident 
by the related publications of recent years. Kang and 
Kim[17] studied the in-plane buckling analysis of 
curved beams using DQM. Recently, Kang and 
Kim[18], and  Kang and Park[19] studied the vibration 
and the buckling analysis of asymmetric curved beams 
using DQM, respectively. From a mathematical point 
of view, the application of the differential quadrature 
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method to a partial differential equation can be 
expressed as follows:

  
 



  for     (23)

where L denotes a differential operator,   are the 

discrete points considered in the domain,  are the row 
vectors of the  values,   are the function values 

at these points,  are the weighting coefficients 

attached to these function values, and  N denotes the 
number of discrete points in the domain. This equation, 
thus, can be expressed as the derivatives of a function 
at a discrete point in terms of the function values at 
all discrete points in the variable domain.

The general form of the function  is taken as

 
    for   (24)

If the differential operator L represents an n th  

derivative, then

∑
N

j= 1
W ijx

k- 1
j =(k-1)(k- 2)⋯(k-n)x k- n- 1i

 

       for i, k=1,2,...,N      (25)

This expression represents N sets of N linear 
algebraic equations,  giving a unique solution for the 

weighting coefficients, W ij
, since the coefficient 

matrix is a Vandermonde matrix which always has an 
inverse.

4. Numerical Application

The DQM is applied to the determination of the 
in-plane extensional vibrations of the curved beam 
including the effects of rotatory inertia and shear 
deformation. The differential quadrature approximations of 
the governing equations and boundary conditions are 
shown.

Applying the differential quadrature method to 
equations (12), (13), and (14) gives





 












 


 

 




 
 











  



(26)




 





 
 














 










 






 






    

   (27)




 




 


 






    
 





 


 








    

 




  

            (28)

The boundary conditions for clamped ends, given by 
equation (21), can be expressed in differential 
quadrature form as follows:

           at    (29)

           at               (30)

            at                (31)

            at                (32)

              at                (33)

              at                (34)

 
Similarly, the boundary conditions for simply 

supported ends, given by equation (22), can be 
expressed in differential quadrature form as follows:

          at    (35)

          at                (36)

           at                (37)

           at                 (38)
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
 



       at                 (39)


 



       at                 (40)

This set of equations together with the appropriate 
boundary conditions can be solved for the in-plane 
extensional  vibrations of the curve beam including the 
effect of rotatory inertia and shear deformation.

5. Numerical Results and 

Comparisons 

Based on the above derivations, the fundamental 

frequency parameters,   or 

  , of the in-plane  extensional 
vibrations of the curved beam including the effects of 
rotatory inertial and  shear deformation are calculated 
by the DQM and are presented together with numerical 
solutions by other methods. Fig. 3 presents the results 
of convergence studies relative to the number of grid 
points . Fig. 3 shows that the accuracy of the 
numerical solution increases with increasing  and 
passes through a maximum. Then, numerical 
instabilities arise if  becomes too large.  The optimal 
value for  is found to be 11 to 15. All results are 
computed with thirteen discrete points along the 
dimensionless axis.  

The fundamental frequency parameter 

   including the effects of rotatory 
inertial and  shear deformation  is calculated by the 
DQM  for the comparisons and is presented together 
with the results  by Austin and Veletsos[11] using a 
combination of a Holzer-type iterative procedure. The 
results are summarized in Tables 1~2, and  the 
solutions by the DQM give  the good accuracy 
compared with the solutions by Austin and 
Veletsos[11]. 

                                      

8 10 12 14 16 18
52.0

52.5

53.0

53.5

54.0

54.5

55.0

52.75

52.74

52.73

52.73

52.73

52.74

52.67

52.60

53.57

54.53 E/(κG) = 10
S/r  =  100

N

Fig. 3. Fundamental frequency parameters, 
           , for in-plane extensional 

vibrations  of curved beams including the effects of
rotatory inertia and shear deformation with 
clamped-clamped ends including a range of ; 
  

 ,  = 10, and =100 

In Tables 3~8, the fundamental frequency parameter 

  of the in-plane extensional vibrations 
of the beam including the effects of rotatory inertial 
and  shear deformation is calculated by the DQM.  
Tables 3~4, Tables 5~6,  and Tables 7~8 show the  

fundamental frequency parameter   
with clamped-clamped, simply-simply supported, and 
clamped-simply supported  ends with variation of the  
shearing flexibility   and the slenderness ratio 

, respectively. There are no comparisons since no 
data are available.

Table 1. Fundamental frequency parameters, 
             , for in-plane extensional 

vibrations of curved beams including the effects of 
rotatory inertial and  shear deformation with 
clamped-clamped ends;  = 10/3 and   




          

Austin and 
Veletsos[11]

DQM

25 42.44 42.26
50 51.38 51.53
75 53.72 53.69
100 54.63 54.60
150 55.28 55.28
200 55.53 55.52
300 55.69 55.70
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Table 2. Fundamental frequency parameters,         
             , for in-plane extensional 

vibrations of curved beams including the 
effects of rotatory inertial and  shear 
deformation with clamped-clamped ends; 
 = 10  and   





          

Austin and 
Veletsos[11]

DQM

25 32.60 32.50

53 46.72 46.65

100 52.76 52.73

200 55.03 55.01

300 55.47 55.46

400 55.63 55.63

Table 3. Fundamental frequency parameters,        
             , for in-plane extensional 

vibrations of curved beams including the 
effects of rotatory inertial and  shear 
deformation  with clamped-clamped ends; 
  = 3

,  
degrees



 30 50 100   300

 30 88.61 111.4 175.3 221.9

 60 29.80 43.15 55.71 53.63

 90 17.17 20.93 22.17 22.57

120 9.689 10.92 11.59 11.82

150  5.667 6.404 6.808 6.943

180 3.570 4.033 4.289 4.374

Table 4. Fundamental frequency parameters, 
           , for in-plane extensional 

vibrations of curved beams including the 
effects of rotatory inertial and  shear 
deformation with clamped-clamped ends; 
 = 5

,  
degrees



 30 50 100   300

 30 86.07 110.5 175.1 221.7

 60 29.39 42.96 52.16 53.57

 90 16.99 20.17 21.93 22.55

120 8.925 10.52 11.47 11.80

150  5.233 6.164 6.733 6.934

180 3.294 3.881 4.241 4.368
 

Table 5. Fundamental frequency parameters,         
           , for in-plane extensional 

vibrations of curved beams including the effects 
of rotatory inertial and  shear deformation with  
simply-simply supported  ends;  = 3

,  
degrees



 30 50 100   300

 30 62.00 92.37 140.42 141.4

 60 26.72 32.54 33.34 33.60

 90 12.56 13.29 13.64 13.75

120 6.302 6.681 6.863 6.920

150  3.504 3.719 3.822 3.855

180 2.058 2.184 2.245 2.264

Table 6. Fundamental frequency parameters,
           , for in-plane extensional 

vibrations of curved beams including the 
effects of rotatory inertial and  shear 
deformation with simply-simply supported  
ends;  = 5

,
degrees



 30 50 100   300

 30 61.79 92.29 139.8 141.3

 60 26.65 32.07 33.31 33.58

 90 12.14 13.10 13.59 13.74

120 6.088 6.585 6.836 6.917

150  3.385 3.665 3.807 3.853

180 1.988 2.153 2.236 2.263

Table 7. Fundamental frequency parameters,         
           , for in-plane extensional 

vibrations of curve beams including the 
effects of rotatory inertial and  shear 
deformation with  clamped-simply supported  
ends;  = 3

,
degrees



 30 50 100   300

 30 72.27 98.11 165.5 178.6

 60 27.31 39.37 42.29 42.88

 90 15.07 16.84 17.60 17.84

120 7.859 8.697 9.070 9.196

150  4.546 4.992 5.2177 5.291

180 2.794 3.064 3.204 3.248
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Table 8. Fundamental frequency parameters,
           , for in-plane extensional 

vibrations of curved beams including the 
effects of rotatory inertial and  shear 
deformation  with clamped-simply supported  
ends;  = 5

,
degrees



 30 50 100   300

 30 71.36 97.84 165.0 178.4

 60 27.13 38.63 41.99 42.84

 90 14.36 16.41 17.48 17.83

120 7.462 8.455 9.004 9.188

150  4.289 4.861 5.179 5.286

180 2.634 2.984 3.180 3.246

From Tables 3 ~ 8, the frequencies of the member 
with clamped ends are much higher than those of the 
member with simply supported ends and clamped- 
simply supported ends. The frequencies can be 
increased by decreasing the opening angle   and the  

shearing flexibility  . The frequencies can be 

also increased  by increasing the slenderness ratio   
in the cases of all boundary conditions.  

In Figs. 4~7, the fundamental frequency parameters 
of the in-plane extensional vibrations of the beam 
neglecting or including the effects of rotatory inertial 
and  shear deformation with both ends  clamped (C-C), 
simply supported (S-S), and clamped-simply supported 
ends (C-S) are compared with the cases of the 

slenderness ratio    are 30 and 300,  the  shearing 
flexibility   are 3 and 10, and the opening angle 
are 180 degree.

From Figs. 4 ~ 7, the frequency parameters of the 
vibrations neglecting the effects of rotatory inertial and 
shear deformation using equations (17)~(18) are higher 
than those of the vibrations including the effects of 
rotatory inertial only using equations (19)~(20), and 
the frequency parameters of the  vibrations including 
the effects of rotatory inertial only  are also higher 
than those of  the vibrations including both the effects 
of rotatory inertial and  shear deformation using 
equations (12)~(14). The difference of the fundamental 
frequency values at the same opening   is decreased 

by increasing the slenderness ratio  and decreasing 
the shearing flexibility . When the slenderness ratio 
is greater than 300,  the frequency values are less affected 
by rotatory inertial and  shear deformation, and the values 
become almost the same (less than 0.5 percent). The 
frequencies of the member with clamped- clamped ends 

are more affected by the slenderness ratio  and the  
shearing flexibility   than those with any other 
boundary conditions. 

C-C S-S C-S
1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

E/(κG) = 3.0
S/r = 30

λ

End condition

 Extentioanl vibration without rotatory inertia & shear defroamtion
 Extentioanl vibration with rotatory inertia only
 Extentioanl vibration with rotatory inertia & shear defroamtion

Fig. 4. Comparisons between fundamental frequency 
parameters,  , for extensional 
vibrations of the curved beam with =3, 
  = 30, and   

  

C-C S-S C-S
1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

E/(κG) = 3.0
S/r = 300

λ

End condition

 Extentioanl vibration without rotatory inertia & shear defroamtion
 Extentioanl vibration with rotatory inertia only
 Extentioanl vibration with rotatory inertia & shear defroamtion

Fig. 5. Comparisons between fundament frequency
parameters,  , for extensional
vibrations of the curved beam with =3,
 = 300, and    

  
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C-C S-S C-S
1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

E/(κG) = 10.0
S/r = 30

λ  Extentioanl vibration without rotatory inertia & shear defroamtion
 Extentioanl vibration with rotatory inertia only
 Extentioanl vibration with rotatory inertia & shear defroamtion

Fig. 6. Comparisons between fundamental frequency 
parameters,  , for extensional
vibrations of  the curved beam with =10,
 = 30, and    

  

C-C S-S C-S
1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

E/(κG) = 10.0
S/r = 300

λ

End condition

 Extentioanl vibration without rotatory inertia & shear defroamtion
 Extentioanl vibration with rotatory inertia only
 Extentioanl vibration with rotatory inertia & shear defroamtion

Fig. 7. Comparisons between fundamental frequency
parameters,  , for extensional
vibrations of the curved beam with =10,
  = 300, and   



 

As it can be seen, the frequency parameters of the 
beam including the effects of rotatory inertial and  
shear deformation affect the beam behavior 
significantly. Therefore, the vibration analysis of 
curved beams with rotatory inertial and shear 
deformation is necessary.

 

6. Conclusions

The differential quadrature method (DQM) was used 
to  compute the eigenvalues of the equations of motion 
governing the  free  in-plane extensional  vibrations of 
a curved beam including the effects of  rotatory inertial 
and  shear deformation with various the slenderness 
ratio, shearing flexibility, boundary conditions, and 
opening angles. The results are analyzed, compared 
with numerical solutions by other methods 
(Holzer-type iterative procedure and an initial value 
integration procedure), and are also  compared with 
each other for the cases of both neglecting the effects 
of rotatory inertial and  shear deformation or including 
the effects of rotatory inertial and  shear deformation.

The present method gives the  results which agree 
very well  with other solutions for the cases treated 
while requiring only a limited number of grid points.

 
The present approach gives the followings:
1) The results by the DQM give the mathematical 

precision compared with the numerical solutions 
by others for the cases in which they are 
available.  

2) Only thirteen discrete points are used for the 
evaluation. 

3) It requires less than 1.0 second to compile the 
program with IMSL subroutine using a personal 
computer.

4) Diversity of new results according to the opening 
angles, boundary conditions,  shearing flexibility, 
and slenderness ratio is also suggested. Those 
results can be used in the comparisons with other 
numerical solutions or  experimental test data.
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