DOI QR코드

DOI QR Code

Cerebral-perfusion Reserve after Carotid-artery Stenting: Relationship with Power Spectrum of Electroencephalography

경동맥스텐트삽입술 후의 뇌관류예비능: 뇌파파워스펙트럼과의 연관성

  • Jeong, Da-hye (Department of Neurology, Gyeongsang National University School of Medicine) ;
  • Jung, Seokwon (Department of Neurology, Gyeongsang National University School of Medicine) ;
  • Kwak, Byeonggeun (Department of Neurology, Gyeongsang National University School of Medicine) ;
  • Kim, Young-Soo (Department of Neurology, Gyeongsang National University School of Medicine) ;
  • Kim, Soo-kyoung (Department of Neurology, Gyeongsang National University School of Medicine) ;
  • Kwon, Oh-Young (Department of Neurology, Gyeongsang National University School of Medicine)
  • 정다혜 (경상대학교 의학전문대학원 신경과학교실) ;
  • 정석원 (경상대학교 의학전문대학원 신경과학교실) ;
  • 곽병근 (경상대학교 의학전문대학원 신경과학교실) ;
  • 김영수 (경상대학교 의학전문대학원 신경과학교실) ;
  • 김수경 (경상대학교 의학전문대학원 신경과학교실) ;
  • 권오영 (경상대학교 의학전문대학원 신경과학교실)
  • Received : 2016.04.21
  • Accepted : 2016.05.11
  • Published : 2016.06.30

Abstract

Carotid-artery stenosis may reduce cerebral perfusion, and affect cerebral neuronal activities. We examined the question of whether the recovery of cerebral-perfusion reserve after carotid-artery stenting (CAS) can affect the EEG power-spectrum. Nineteen candidates for CAS were initially recruited. Subtraction imaging of single photon emissary computerized tomography (SPECT) and an electroencephalogram (EEG) were taken twice, before and 1 month after CAS. At each time point, the EEGs were recorded before and after injection of acetazolamide (pre-ACZ EEG and post-ACZ EEG). Finally, 7 patients were enrolled after exclusion of incomplete studies. We obtained the spectral ratio (SR) of each hemisphere. SR was defined as the divided value of the power-spectrum sum of fast activities by that of slow activities. The power-spectrum values between hemispheres were compared using the inter-hemispheric index of spectral ratio (IHISR), and we examined the correlation between the power-spectrum and the cerebral-perfusion reserve. Cerebral-perfusion reserve improved after CAS on the stent side in 6 of 7 patients. In 3 patients with unilateral carotid-artery stenosis, CAS increased SR on the pre-ACZ EEGs, and IHISR on the post-ACZ EEGs. The increases of SR and IHISR were concordant with the increment of cerebral-perfusion reserve. In contrast, the results in the other patients with bilateral stenosis showed complex patterns. The SR of pre-ACZ EEGs and IHISR of post-ACZ EEGs may be useful electrophysiological markers for the blood-flow reserve after CAS in patients with unilateral carotid-artery stenosis, but not in those with bilateral stenosis.

경동맥경화증은 대뇌혈류를 감소시킬 수 있고, 대뇌신경세포의 활성도에 영향을 미칠 수 있다. 저자들은 경동맥스텐트삽입술(carotid-artery stenting, CAS) 후 뇌혈류예비능의 회복이 뇌파의 파워스펙트럼에 미치는 영향을 조사하였다. 우선 19명의 CAS 대상자들을 모집하였다. SPECT의 subtraction imaging과 뇌파를 두 번의 시기에 검사하였다. 두 번의 시기는 CAS 시술 직전과 시술하고 1개월이 지난 시점이었다. EEG는 acetazolamide 주입 전(pre-ACZ EEG)과 주입 후(pre-ACZ EEG)에 기록하였다. 검사를 모두 하지 못했거나 뇌파기록의 질이 분석에 적절하지 못했던 환자를 제외하고 최종적으로 7명의 환자를 대상으로 연구하였다. 저자들은 각각의 대뇌 반구에서 spectral ratio (SR)를 구했다. SR은 빠른파형의 파워스펙트럼 수치를 느린파형의 파워스펙트럼 수치로 나눈 값으로 정의하였다. 또한 저자들은 저자들은 반구간인덱스(inter-hemispheric index of spectral ratio, IHISR)를 이용하여 양쪽 대뇌 반구 사이의 파워스펙트럼 수치를 비교하였고, 파워스펙트럼의 변화와 뇌혈류예비능의 변화 사이의 연관성을 관찰하였다. 총 7명의 환자 중 6명의 환자에서 CAS 시행 후 스텐트를 삽입한 쪽의 뇌혈류예비능이 호전되었다. 편측 경동맥경화증이 있었던 3명의 환자들에서는 모든 환자에서 CAS가 pre-ACZ EEG에서 SR을 증가시켰고, post-ACZ EEG의 IHISR을 증가시켰다. SR과 IHISR의 증가는 뇌혈류예비능의 증가와 연관성이 있었다. 반면에 양쪽 경동맥경화증이 있었던 나머지 환자들의 결과는 복잡한 양상을 띄었다. 경동맥협착증이 한쪽에만 있는 환자에서 pre-ACZ EEG의 SR과 post-ACZ EEG의 IHISR가 CAS를 시술한 후에 뇌혈류예비능의 변화를 평가할 수 있는 유용한 전기생리학적 지표가 될 수 있다는 것을 본 연구의 결과를 통해 알 수 있었다. 그러나 경동맥협착증이 양쪽 모두에 있었던 환자들에서는 결과가 복잡한 양상으로 나타났다. 이는 양쪽 협착이 있는 경우에는 뇌의 혈역학이 복잡하기 때문일 것으로 판단하였다.

Keywords

References

  1. Matsuda H, Higashi S, Kinuya K, Tsuji S, Nozaki J, Sumiya H, et al. SPECT evaluation of brain perfusion reserve by the acetazolamide test using Tc-99m HMPAO. Clin Nucl Med. 1991;16(8):572-579. https://doi.org/10.1097/00003072-199108000-00008
  2. Kuroda S, Houkin K, Kamiyama H, Mitsumori K, Iwasaki Y, Abe H. Long-term prognosis of medically treated patients with internal carotid or middle cerebral artery occlusion: can acetazolamide test predict it? Stroke. 2001;32(9):2110-2116. https://doi.org/10.1161/hs0901.095692
  3. Vernieri F, Pasqualetti P, Passarelli F, Rossini PM, Silvestrini M. Outcome of carotid artery occlusion is predicted by cerebrovascular reactivity. Stroke. 1999;30(3):593-598. https://doi.org/10.1161/01.STR.30.3.593
  4. Vagal AS, Leach JL, Fernandez-Ulloa M, Zuccarello M. The acetazolamide challenge: techniques and applications in the evaluation of chronic cerebral ischemia. AJNR Am J Neuroradiol. 2009;30(5):876-884. https://doi.org/10.3174/ajnr.A1538
  5. Derdeyn CP. Is the acetazolamide test valid for quantitative assessment of maximal cerebral autoregulatory vasodilation? Stroke. 2000;31(9):2271-2272.
  6. Trojaborg W, Boysen G. Relation between EEG, regional cerebral blood flow and internal carotid artery pressure during carotid endarterectomy. Electroencephalogr Clin Neurophysiol. 1973;34(1):61-69. https://doi.org/10.1016/0013-4694(73)90151-X
  7. Whittemore AD, Kauffman JL, Kohler TR, Mannick JA. Routine electroencephalographic (EEG) monitoring during carotid endarterectomy. Ann Surg. 1983;197(6):707-713. https://doi.org/10.1097/00000658-198306000-00009
  8. Myers RR, Stockard JJ, Saidman LJ. Monitoring of cerebral perfusion during anesthesia by time-compressed Fourier analysis of the electroencephalogram. Stroke. 1977;8(3):331-337. https://doi.org/10.1161/01.STR.8.3.331
  9. Chiappa KH, Burke SR, Young RR. Results of electroencephalographic monitoring during 367 carotid endarterectomies. Use of a dedicated minicomputer. Stroke. 1979;10(4):381-388. https://doi.org/10.1161/01.STR.10.4.381
  10. Shin WC HE, Hyung KL, Kang HO, Lee TG, Chang DI, et al. Decision of shunt insertion based on electroencephalography and stump pressure during carotid endarterectomy. J Korean Neurol Assoc. 1999;17(6):797-803.
  11. Kluytmans M, van der Grond J, Viergever MA. Gray matter and white matter perfusion imaging in patients with severe carotid artery lesions. Radiology. 1998;209(3):675-682. https://doi.org/10.1148/radiology.209.3.9844658
  12. van Laar PJ, van der Grond J, Moll FL, Mali WP, Hendrikse J. Hemodynamic effect of carotid stenting and carotid endarterectomy. J Vasc Surg. 2006;44(1):73-78. https://doi.org/10.1016/j.jvs.2006.03.023
  13. North American Symptomatic Carotid Endarterectomy Trial (NASCET) investigators. Clinical alert: benefit of carotid endarterectomy for patients with high-grade stenosis of the internal carotid artery. National Institute of Neurological Disorders and Stroke Stroke and Trauma Division. Stroke. 1991;22(6):816-817. https://doi.org/10.1161/01.STR.22.6.816
  14. Ihl R, Eilles C, Frlich L, Maurer K, Dierks T, Perisic I. Electrical brain activity and cerebral blood flow in dementia of the Alzheimer type. Psychiatry Res. 1989;29(3):449-452. https://doi.org/10.1016/0165-1781(89)90119-4
  15. Sharbrough FW, Messick JM Jr., Sundt TM Jr. Correlation of continuous electroencephalograms with cerebral blood flow measurements during carotid endarterectomy. Stroke. 1973;4(4):674-683. https://doi.org/10.1161/01.STR.4.4.674
  16. Nagata K. Topographic EEG in brain ischemia--correlation with blood flow and metabolism. Brain Topogr. 1988;1(2):97-106. https://doi.org/10.1007/BF01129174
  17. Nagata K, Gross CE, Kindt GW, Geier JM, Adey GR. Topographic electroencephalographic study with power ratio index mapping in patients with malignant brain tumors. Neurosurgery. 1985;17(4):613-619. https://doi.org/10.1227/00006123-198510000-00014
  18. Nagata K, Tagawa K, Hiroi S, Shishido F, Uemura K. Electroencephalographic correlates of blood flow and oxygen metabolism provided by positron emission tomography in patients with cerebral infarction. Electroencephalogr Clin Neurophysiol. 1989;72(1):16-30. https://doi.org/10.1016/0013-4694(89)90027-8
  19. Hosoda K, Fujita S, Kawaguchi T, Shose Y, Shibata Y, Tamaki N. Influence of degree of carotid artery stenosis and collateral pathways and effect of carotid endarterectomy on cerebral vasoreactivity. Neurosurgery. 1998;42(5):988-994. https://doi.org/10.1097/00006123-199805000-00019
  20. Muraishi K, Kameyama M, Sato K, Sirane R, Ogawa A, Yoshimoto T, et al. Cerebral circulatory and metabolic changes following EC/IC bypass surgery in cerebral occlusive diseases. Neurol Res. 1993;15(2):97-103. https://doi.org/10.1080/01616412.1993.11740117
  21. Yasui N, Suzuki A, Sayama I, Kawamura S, Shishido F, Uemura K. Comparison of the clinical results of STA-MCA anastomosis and the medical treatment in the cerebral low perfusion patients with viable brain tissue. Neurol Res. 1991;13(2):84-88. https://doi.org/10.1080/01616412.1991.11739971
  22. Piepgras A, Leinsinger G, Kirsch CM, Schmiedek P. STA-MCA bypass in bilateral carotid artery occlusion: clinical results and long-term effect on cerebrovascular reserve capacity. Neurol Res. 1994;16(2):104-107. https://doi.org/10.1080/01616412.1994.11740204
  23. Romero JR, Pikula A, Nguyen TN, Nien YL, Norbash A, Babikian VL. Cerebral collateral circulation in carotid artery disease. Curr Cardiol Rev. 2009;5(4):279-288. https://doi.org/10.2174/157340309789317887