DOI QR코드

DOI QR Code

Numerical analysis of solar pond with insulation layer

단열층을 가지는 솔라 폰드의 수치해석

  • Yu, Jik-Su (Department of Power System Engineering, Kunsan National University) ;
  • Mun, Soo-Beom (Training Center of Ship Operation, Kunsan National University)
  • Received : 2015.10.30
  • Accepted : 2016.03.30
  • Published : 2016.05.31

Abstract

This paper reports a fundamental study of temperature characteristics of a solar pond with an insulation layer. Further, these characteristics were compared with those of a solar pond without the insulation layer. The governing equation was discretized via finite difference method. The governing equations are two-dimensional unsteady-state second-order partial differential equations. The conclusions of the study are as follows: 1) If the depth of the solar pond was increased, the desired effect of increase in temperature was not produced because the amount of solar insolation received by the bottom of the solar pond decreased. 2) As the temperature of the soil during winter is higher than the temperature of the water in a solar pond, heat was transferred from the soil to the solar pond. 3) For the case of the solar pond with insulation layer, it was estimated that the dependence rate of solar energy was 83.3% and that of the boiler was 16.7%.

본 논문은 단열층을 가지는 솔라폰드의 온도특성을 알아보기 위한 기초 연구이다. 또한, 기존의 단열층을 가지지 않는 경우의 솔라폰드의 온도특성과 비교하였다. 수치해석법은 유한차분법(Finite-Difference Method)를 이용하였으며, 2차원 비정상의 상태를 가정하여 계산하였다. 수치해석을 통해 다음과 같은 결과를 얻었다. 1) 솔라 폰드의 깊이가 깊어지면 폰드의 하부까지 도달하는 일사량이 줄어들기 때문에 온도 상승 효과는 발생하지 않는 것을 확인했다. 2) 동절기에는 토양의 온도가 솔라 폰드 내 물의 온도보다 상대적으로 높아 토양에서 폰드 내로 열이 전달되는 것을 확인할 수 있었다. 3) 단열층을 가지는 솔라폰드의 경우, 태양의 의존율은 83.3%, 보일러의 의존율은 16.7%로 자연에너지의 의존도가 높은 것을 확인할 수 있었다.

Keywords

References

  1. H. Y. Park, K. B. Lim, "A study on the behaviors of several layers in a solar pond," The Korean Society of Mechanical Engineers, vol. 11, no. 2, pp. 304-313, 1987 (in Korean).
  2. H. Stommel, B. Arons, and D. Blanchard, "An oceanographical curiosity: The perpetual salt fountain," Deep Sea Resource, vol. 3, no. 2, pp. 152-153, 1953.
  3. A. V. Kalecsinsky, Ueber die ungarishen warmen und heissen kochsalzseen als natuerlich waemeaccumulatoren, Ann. Physik VI, pp. 408, 1902 (in German).
  4. H. Weinberger, "The physics of the solar pond," Solar Energy, vol. 8, no. 2, pp. 45, 1964. https://doi.org/10.1016/0038-092X(64)90046-5
  5. J. S. Turner, "Double-diffusive phenomena," Ann. Rev. Fluid Mech., vol. 6, pp. 37-56, 1974. https://doi.org/10.1146/annurev.fl.06.010174.000345
  6. H. Tabor, "Solar ponds," Solar Energy, vol. 27, no. 3, pp. 181-194, 1981. https://doi.org/10.1016/0038-092X(81)90120-1
  7. www.kma.go.kr, Accessed July 1, 2014.