DOI QR코드

DOI QR Code

저압에서의 과냉각 비등 현상에 대한 CFD의 유효성 검토

CFD validation for subcooled boiling under low pressure

  • Choi, Yong-Seok (Division of Marine Engineering, Korea Maritime and Ocean University) ;
  • Kim, You-Taek (Division of Marine System Engineering, Korea Maritime and Ocean University) ;
  • Lim, Tae-Woo (Division of Marine Engineering, Korea Maritime and Ocean University)
  • 투고 : 2016.03.09
  • 심사 : 2016.05.19
  • 발행 : 2016.05.31

초록

본 연구에서는 전산유체역학(CFD)을 이용하여 저압에서의 과냉각 비등 현상에 대한 수치해석적 연구를 수행하였다. 과냉각 비등 현상을 시뮬레이션하기 위해서 벽비등 모델을 사용하였으며, 벽비등 모델은 기포 이탈 직경, 핵 사이트 밀도 그리고 기포 이탈 빈도로 구성된 하위모델을 필요로 한다. 전산유체역학 코드 CFX는 실험 자료에 근거한 기본 모델을 제공한다. 하지만 이러한 모델은 대부분 고압조건에서 개발되었기 때문에 저압조건에서는 잘 맞지 않는 것으로 보인다. 따라서 본 연구에서는 저압조건에서 과냉각 비등 현상에 대해서 CFD의 유효성을 검토하였다. 수치해석적 결과는 기존의 실험 결과와 비교하였다. 수치해석은 질량유속 $250{\sim}750kg/m^2s$, 열유속 $0.37{\sim}0.77MW/m^2$ 그리고 출구압력 0.11 MPa범위에서 수행되었다. 저압조건에서 개발된 상관식을 적용함으로써 수치해석의 정확성을 높일 수 있었다.

Subcooled boiling under low pressure was numerically investigated using computational fluid dynamics(CFD). The wall boiling model was used for simulating the subcooled boiling; this model requires sub-models consisting of bubble departure diameter, nucleation site density and bubble departure frequency. The CFD code CFX provides the default models based on experimental data. Because these models are mostly developed under high pressure conditions, it would not be predicted well in low pressure conditions. Thus in this study, CFD validation for subcooled boiling under low pressure was analyzed. The numerical results were compared with experimental data from published paper. Simulations were performed with mass flux ranging from 250 to $750kg/m^2s$, heat flux ranging from 0.37 to $0.77MW/m^2$ and constant outlet pressure of 0.11 MPa. Employing the empirical correlation developed under low pressures could increase the accuracy of numerical analysis.

키워드

참고문헌

  1. E. Krepper, B. Koncar, and Y. Egorov, "CFD modelling of subcooled boiling-concept, validation and application to fuel assembly design," Nuclear Engineering and Design, vol. 237, no. 7, pp. 716-731, 2007. https://doi.org/10.1016/j.nucengdes.2006.10.023
  2. W. K. In, C. H. Shin, and T. H. Chun, "Near-wall grid dependency of CFD simulation for a subcooled boiling flow using wall boiling model," Journal of Computational Fluids Engineering, vol. 15, no. 3, pp. 24-31, 2010 (in Korean).
  3. Y. S. Choi and T. W. Lim, "Heat transfer characteristics and flow pattern investigation in micro-channels during two-phase flow boiling," Journal of the Korean Society of Marine Engineering, vol. 39, no. 7, pp. 696-701, 2015 (in Korean). https://doi.org/10.5916/jkosme.2015.39.7.696
  4. H. Anglart and O. Nylund, "CFD application to prediction of void distribution in two-phase bubbly flows in rod bundles," Nuclear Engineering and Design, vol. 163, no. 1-2, pp. 81-98, 1996. https://doi.org/10.1016/0029-5493(95)01160-9
  5. R. Zhuan and W. Wang, "Flow pattern of boiling in micro-channel by numerical simulation," International Journal of Heat and Mass Transfer, vol. 55, no. 5-6, pp. 1741-1753, 2012. https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.029
  6. B. U. Bae, B. J. Yun, H. Y. Yoon, C. H. Song, and G. C. Park, "Analysis of subcooled boiling flow with one-group interfacial area transport equation and bubble lift-off model," Nuclear Engineering and Design, vol. 240, no. 9, pp. 2281-2294, 2010. https://doi.org/10.1016/j.nucengdes.2010.04.001
  7. Y. Y. Jiang, H. Osada, M. Inagaki, and N. Horinouchi, "Dynamic modeling on bubble growth, detachment and heat transfer for hybrid-scheme computations of nucleate boiling," International Journal of Heat and Mass Transfer, vol. 56, no. 1-2, pp. 640-652, 2013. https://doi.org/10.1016/j.ijheatmasstransfer.2012.09.006
  8. D. Prabhudharwadkar, M. A. Lopez-de-Bertodano, T. Hibiki, and J. R. Buchanan Jr., "Assessment of subcooled boiling wall boundary correlations for two-fluid model CFD," International Journal of Heat and Mass Transfer, vol. 79, pp. 602-617, 2014. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.040
  9. G. G. Bartolomej and V. M. Chanturiya, "Experimental study of true void fraction when boiling subcooled water in vertical tubes," Thermal Engineering, vol. 14, no. 2, pp. 123-128, 1967.
  10. E. Chen, Y. Li, and X. Cheng, "CFD simulation of upward subcooled boiling flow of refrigerant-113 using the two-fluid model," Applied Thermal Engineering, vol. 29, no. 11-12, pp. 2508-2517, 2009. https://doi.org/10.1016/j.applthermaleng.2008.12.022
  11. S. C. P. Cheung, S. Vahaji, G. H. Yeoh, and J. Y. Tu, "Modeling subcooled flow boiling in vertical channels at low pressures - part 1: assessment of empirical correlations," International Journal of Heat and Mass Transfer, vol. 75, pp. 736-753, 2014. https://doi.org/10.1016/j.ijheatmasstransfer.2014.03.016
  12. O. Zeitoun and M. Shoukri, "Bubble behavior and mean diameter in subcooled flow boiling," Journal of Heat Transfer, vol. 118, no. 1, pp. 110-116, 1996. https://doi.org/10.1115/1.2824023
  13. B. J. Yun, G. C. Park, C. H. Song, and M. K. Chung, "Measurements of local two-phase flow parameters in a boiling flow channel," Proceedings of the OECD/CSNI Specialist Meeting on Advanced Instrumentation and Measurement Techniques, pp. 243-265, 1997.
  14. T. H. Lee, G. C. Park, and D. J. Lee, "Local flow characteristics of subcooled boiling flow of water in a vertical concentric annulus," International Journal of Multiphase Flow, vol. 28, no. 8, pp. 1351-1368, 2002. https://doi.org/10.1016/S0301-9322(02)00026-5
  15. H. C. Unal, "Maximum bubble diameter, maximum bubble-growth time and bubble-growth rate during the subcooled nucleate flow boiling of water up to 17.7 MN/m2," International Journal of Heat and Mass Transfer, vol. 19, no. 6, pp. 643-649, 1976. https://doi.org/10.1016/0017-9310(76)90047-8
  16. G. Kocamustafaogullari and M. Ishii, "Interfacial area and nucleation site density in boiling systems," International Journal of Heat and Mass Transfer, vol. 26, no. 9, pp. 1377-1387, 1983. https://doi.org/10.1016/S0017-9310(83)80069-6
  17. W. Fritz, "Maximum volume of vapor bubbles," Physikalische Zeitschrift, vol. 36, pp. 379-384, 1935.
  18. N. Basu, G. R. Warrier, and V. K. Dhir, "Onset of nucleate boiling and active nucleation site density during subcooled flow boiling," Journal of Heat Transfer, vol. 124, no. 4, pp. 717-728, 2002. https://doi.org/10.1115/1.1471522
  19. M. Lemmert and J. Chawla, Influence of Flow Velocity on Surface Boiling Heat Transfer Coefficient, Heat Transfer in Boiling, Ed. E. Hahne and U. Grigull, Hemisphere Publishing Corporation, pp. 237-247, 1977.
  20. H. T. Kim, H. K. Park, Y. T. Kim, K, H. Bang, and J. S. Suh, "Flow boiling in an inclined channel with downward-facing heated upper wall," Heat Transfer Engineering, vol. 35, no. 5, pp. 492-500, 2014. https://doi.org/10.1080/01457632.2013.833053
  21. R. Maurus, V. Ilchenko, and T. Sattelmayer, "Study of the bubble characteristics and the local void fraction in subcooled flow boiling using digital imaging and analysing techniques," Experimental Thermal and Fluid Science, vol. 26, no. 2-45, pp. 147-155, 2002. https://doi.org/10.1016/S0894-1777(02)00121-8
  22. N. Kurul and M. Z. Podowski, "Multi-dimensional effects in forced convection subcooled boiling," Proceedings of the Ninth Heat Transfer Conference, vol. 2, pp. 21-26, 1990.
  23. B. Koncar, I. Kljenak, and B. Mavko, "Modelling of local two-phase flow parameters in upward subcooled flow boiling at low pressure," International Journal of Heat and Mass Transfer, vol. 47, no. 6-7, pp. 1499-1513, 2004. https://doi.org/10.1016/j.ijheatmasstransfer.2003.09.021
  24. V. Tolubinsky and D. Kostanchuk, "Vapour bubbles growth rate and heat transfer intensity at subcooled water boiling," Proceedings of the Fourth International Heat Transfer Conference, vol. 5, Paper No. B-2.8, 1970.
  25. R. Cole, "A photographic study of pool boiling in the region of the critical heat flux," AIChE Journal, vol. 6, no. 4, pp. 533-538, 1960. https://doi.org/10.1002/aic.690060405
  26. K. Stephan, Heat Transfer in Condensation and Boiling, Springer-Verlag, 1992.

피인용 문헌

  1. Numerical Study on the Saturated Flow Boiling of Methane in Vertical Pipe vol.33, pp.6, 2021, https://doi.org/10.13000/jfmse.2021.12.33.6.1429