DOI QR코드

DOI QR Code

Design of eccentric forging process for camber bolts using finite element method

유한요소법을 이용한 캠버볼트의 편심단조 공정설계

  • Kim, Kwan-Woo (Department of Mechanical Engineering, Chungbuk National University) ;
  • Qiu, Yuan-Gen (Department of Mechanical Engineering, Chungbuk National University) ;
  • Cho, Hae-Yong (Department of Mechanical Engineering, Chungbuk National University)
  • Received : 2015.12.08
  • Accepted : 2016.05.10
  • Published : 2016.05.31

Abstract

A new eccentric forging process for camber bolts has been suggested in this study. The camber bolt is manufactured by a two-step process: the typical forging process for normal bolts and the trimming process for the eccentric flange. The processes are performed under high forging load and generate a large amount of chip during trimming. A new forging process has been required in order to overcome these problems. The eccentric forging is the new process in which the load axis is offset from the central axis, as against central load applied in a typical forging process. The eccentric forging process could reduce forging load and save the amount of chip. In order to manufacture camber bolts by an optimum process, it is required to adjust the geometry of eccentric die and the offset from the central axis.

본 연구에서는 일반 볼트와 달리 두께가 얇고 단면적이 넓은 편심원형 플랜지구조를 가진 캠버볼트의 편심단조공정을 제시하였다. 캠버볼트는 일반 볼트와 같이 축대칭 형상으로 단조 후, 플랜지 부분을 트리밍하여 가공한다. 따라서 단조과정에서는 높은 단조 하중과 대량의 칩이 발생한다. 이와 같은 문제점을 해결하기 위해 새로운 단조공정이 요구된다. 편심단조공정은 일반적인 단조공정과 달리 중심축에서 편심 된 상태로 가공하는 새로운 단조 공정이다. 또한 편심단조공정은 단조하중과 단조 후 트리밍 칩의 양을 줄일 수 있다. 이러한 캠버볼트의 편심단조공정설계를 위해 편심유도금형의 편심량과 금형형상의 최적화가 필요하다.

Keywords

References

  1. J. H. Kim, S. W. Chae, S. S. Han, and Y. H. Son, "Manufacturing process design of aluminum alloy bolt," The Korean Society for Precision Engineering, vol. 27, no. 5, pp. 63-68, 2010.
  2. S. E. Song and H. H. Kwon, "A study on the cold forging development of guide valve for the fuel pressure regulator," The Korean Society of Manufacturing Technology Engineers, vol. 21, no. 2, pp. 331-336, 2012. https://doi.org/10.7735/ksmte.2012.21.2.331
  3. S. J. Jang, M. C. Lee, S. H. Shim, Y. H. Son, D. J. Yoon, and M. S. Joun, "Finite element analysis of manufacturing process of a 12 point flange head bolt with emphasis on thread rolling process," Transactions of Materials Processing, vol. 19, no. 4, pp. 248-252, 2010. https://doi.org/10.5228/KSPP.2010.19.4.248
  4. U. J. Jung, J. J. Lee, and G. J. Park, "A preliminary study on the optimal shape design of the axisymmetric forging component using equivalent static loads," The Korean Society of Mechanical Engineers, vol. 35, no. 1, pp. 1-10, 2011.
  5. K. W. Kim, Y. T. Kim, W. J. Kim, and H. Y. Cho, "Finite element analysis for multi-stage forging process design of bolt with nonaxisymmetric washer cam," Journal of the Korean Society of Marine Engineering, vol. 32, no. 4, pp. 585-595, 2008. https://doi.org/10.5916/jkosme.2008.32.4.585
  6. F. Schongena, F. Klockea, P. Mattfelda, S. Rjasanowb, and R. Grzhibovskisb, "FEM/BEM simulation of cold forging process considering presstool-workpiece inneraction," Procedia Engineering, vol. 81, pp 2403-2408, 2014. https://doi.org/10.1016/j.proeng.2014.10.363
  7. H. G. Lee, K. S. Shin, and Y. B. Park, "A study on process design of cold forging for cost-saving of asymmetric pinch yoke for automobile steering system," The Korean Society for Precision Engineering of 2013 Spring Conference, pp. 557-558, 2013.
  8. W. S. Weronski, A. Gontarz, and Z. Pater, "The research of forging process of eccentric part on three slide forging press," Journal of Materials Processing Technology, vol. 177, no. 1-3, pp. 214-217, 2006. https://doi.org/10.1016/j.jmatprotec.2006.03.203