DOI QR코드

DOI QR Code

ZERO BASED INVARIANT SUBSPACES AND FRINGE OPERATORS OVER THE BIDISK

  • Received : 2015.05.16
  • Published : 2016.07.01

Abstract

Let M be an invariant subspace of $H^2$ over the bidisk. Associated with M, we have the fringe operator $F^M_z$ on $M{\ominus}{\omega}M$. It is studied the Fredholmness of $F^M_z$ for (generalized) zero based invariant subspaces M. Also ker $F^M_z$ and ker $(F^M_z)^*$ are described.

Acknowledgement

Supported by : Japan Society for the Promotion of Science

References

  1. X. Chen and K. Guo, Analytic Hilbert Modules, Chapman & Hall/CRC, Boca Raton, FL, 2003.
  2. J. Conway, A Course in Operator Theory, Grad. Stud. Math., Vol. 21, Amer. Math. Soc., RI, 2000.
  3. K. Guo and R. Yang, The core function of submodules over the bidisk, Indiana Univ. Math. J. 53 (2004), no. 1, 205-222. https://doi.org/10.1512/iumj.2004.53.2327
  4. K. J. Izuchi, K. H. Izuchi, and Y. Izuchi, Splitting invariant subspaces in the Hardy space over the bidisk, J. Australian Math. Soc., to appear.
  5. K. J. Izuchi, K. H. Izuchi, and Y. Izuchi, One dimensional perturbation of invariant subspaces in the Hardy space over the bidisk I, preprint.
  6. W. Rudin, Function Theory in Polydiscs, Benjamin, New York, 1969.
  7. R. Yang, Operator theory in the Hardy space over the bidisk (III), J. Funct. Anal. 186 (2001), no. 2, 521-545. https://doi.org/10.1006/jfan.2001.3799
  8. R. Yang, Beurling's phenomenon in two variables, Integral Equations Operator Theory 48 (2004), no. 3, 411-423. https://doi.org/10.1007/s00020-002-1195-7
  9. R. Yang, The core operator and congruent submodules, J. Funct. Anal. 228 (2005), no. 2, 469-489. https://doi.org/10.1016/j.jfa.2005.06.022
  10. R. Yang, Hilbert-Schmidt submodules and issues of unitary equivalence, J. Operator Theory 53 (2005), no. 1, 169-184.
  11. R. Yang, On two variable Jordan block II, Integral Equations Operator Theory 56 (2006), no. 3, 431-449. https://doi.org/10.1007/s00020-006-1422-8

Cited by

  1. Fredholmness of fringe operators over the bidisk vol.109, pp.3, 2017, https://doi.org/10.1007/s00013-017-1075-7