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Anti-Sway Control of the Overhead Crane System using HOSM 
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Abstract – This paper proposes a sum of squares (SOS) method for anti-swing control of overhead 
crane system using HOSM (High-Order Sliding-Mode) observer. By representing the dynamic 
equations of overhead crane as the polynomial dynamic equations via Taylor series expansion, the 
control input is obtained from the converted polynomial dynamic equations by numerical tool 
SOSTOOL. Since the actual crane systems include disturbance such as wind and friction, we propose a 
method to compensate for the disturbance by estimating the disturbance using HOSM observer. 
Numerical simulations show the effectiveness and the applicability of the proposed method. 
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1. Introduction 
 
Overhead crane system that can move a heavy object has 

been much used in many construction sites and ports. One 
of the most important thing in crane system is to transfer 
payload as quickly and safely as possible within a given 
time. Sway of the heavy payload occurring when moving 
the trolley should be suppressed to achieve the efficient 
operation of the overhead crane system in that large sway 
of the payload causes the accident in industrial sites. Sway 
of the payload is directly affected by the length of the rope 
and acceleration of trolley. Thus, various researches to 
minimize sway of payload are in progress. 

Crane control system has been studied using linear 
control, nonlinear control, and fuzzy control. The linear 
controller is designed by linearizing the nonlinear dynamic 
equations of the crane [1]. Although the linear controller 
is a very simple control method, it should be based on 
the linear model which is subject to the linearization 
error due to the omission of the nonlinear terms. In the 
case of nonlinear controller, a nonlinear control method 
based on feedback linearization for swing control ensures 
the stability which can be proved by Lyapunov stability 
theorem [2, 3]. On the other hand, a fuzzy controller is to 
control sway of the crane by applying the expert 
knowledge. [4-7] proposed an algorithm using the Fuzzy 
LMI (Linear Matrix Inequality) technique in order to 
solve the stability problem of the system. The LMI-based 
algorithm requires a constant system matrix in order to 
calculate the control input. The performance of the 
controller is not guaranteed when such algorithm is applied 
to the actual model. 

The actual crane systems include disturbance such as 
wind and friction. In the actual system, observation of the 
system states including the disturbance is one of the most 
important issues. HOSM observer designs for linear system 
with unknown input have been studied in various ways 
[8-11]. The corresponding conditions for linear time-
invariant systems with disturbances were obtained in [10, 
13]. HOSM observer provides the global observation of the 
state and the output. In addition, observer provides global 
finite-time exact observation of the state and identification 
of smooth disturbances of strongly observable systems. 
High-order sliding-mode differentiators were suggested 
for exact observer design [14-17]. It provides the finite 
time convergence of the observation error in the existence 
of the disturbance. 

In this paper, we show that nonlinear terms in the 
dynamic equations of the crane can be converted into the 
form of a polynomial matrix system using the Taylor 
series expansion without having to linearize the nonlinear 
terms. Then, we obtain the control input using the Sum of 
Squares (SOS) method [11]. The control input is obtained 
from the converted polynomial dynamic equations by 
using the numerical tool SOSTOOL [18]. Furthermore, the 
disturbance presented in the actual system and state vector 
are estimated by using the HOSM observer. Disturbances 
presented in each of the trolley traveling motion and sway 
motion can be compensated altogether by estimating 
only one of the disturbances in both systems using HOSM 
observer. In this way, we can improve the performance of 
the crane control system and then verify its performance 
through the stability analysis and the numerical simulations. 

 
 

2. Modeling of Overhead Crane 
 
Fig. 1 represents the 2-D model of the overhead crane. 
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By assuming that the load has a point mass, and the rope 
has no mass and elasticity, the dynamic equation of the 
crane can be expressed as [1] 

 
 2( ) cos sinL C L Lm m x m l m l uq q q q+ + - =&& &&&   (1)  

 2cos sin 0L L Lm l x m l m glq q q+ + =&&&&  
 

where g is gravity constant. Considering the disturbance 
such as friction, the crane system in (1) can be rewritten as 

 
 2( ) cos sinL C L Lm m x m l m l uq q q q+ + - =&& &&&   (2) 

 2cos sin 0L L Lm l x m l m glq q q mq+ + - =&& &&&  
 

where m  is the viscous damping coefficient associated 
with the trolley motion. Eq. (2) can be arranged as 

 

 x x xx F G u
F G uq q qq

= + +W
= + +W
&&
&&  (3) 

 
where  

 

x
WF
R

= , x
PG
R

= , 
VF
Sq = , 

QG
Sq = ,  

cos ( )x Rl
q mq-

W = & , 
( )L C

L

m m
m lSq

mq+
W =

&
,  

2 sin cos sinL LW m l m gq q q q= +& ,  
2 sin cos ( ) sinL L CV m l m m gq q q q= + +& , ( )L CR m m= +  

2cosLm q- , 1P = , cosQ q= ,  
(( )L C LS l m m m= - - + 2cos )q ,  

xW  and qW  are the lumped uncertainties of the actual 
crane system. 

Unlike the linear systems, state variables should exist in 
the system matrix since dynamic Eqs. (1) and (2) contain 
the non-linear terms. Therefore, a lot of difference can exist 
between the actual model and the linearized model, which 

can be reduced by expressing nonlinear terms as 
polynomials by using Taylor series expansion as in Table 1. 
Hence, polynomial equations can be obtained by using 
Taylor series expansion as 

 

 1 2

3 4

x P P u
P P uq

= +
= +
&&
&&   (4) 

 
Where 
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Then, the state space equations can be represented from 

(4) as follows: 
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2
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ê úë û

&
&&&

&
&&&

.  (5) 

 
The objective is to make the position error e x r= -  for 

a constant reference position of the trolley r converge to 
zero. Then, by introducing : [ ,  ,  ,  ]T nx e e q q= ÎÂ&& where 

4n = , the position error dynamics is represented as 
 

 ( ) ( )x A x x B x u= +&   (6) 

Fig. 1. 2-D model of an overhead crane (mL: payload mass, 
mC: trolley mass, l: rope length, u: control input,
x : trolley position, q : sway angle) 

Table 1. Taylor series expansion of nonlinear terms 

Nonlinear term Taylor expansion 

sinq  3 51 1
6 120

q q q- +  

cosq  2 4 61 1 11
2 24 720
q q q- + -  

sin cosq q  3 52 2
3 15

q q q- +  

2cos q  2 4 61 21
3 45

q q q- + -  
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where ( )A x  and ( )B x  are the corresponding matrix and 
vector in (5). 

The design procedure for the proposed SOS-based 
disturbance compensation control using HOSM observer 
consists of two steps; i.e., the SOS-based controller design 
and the HOSM observer design, which will be described in 
the following sections. 

 
 

3. SOS-based Controller Design 
 
In this section, we design the controller for the crane 

system presented in the previous section using SOSTOOL. 
A multivariate polynomial ( )p x is a sum of squares (SOS), 
if there exist polynomials 1( ),...., ( )mp x p x such that 

( )p x = 2
1

( )m
ii

p x
=å . It is clear that ( )p x being an SOS 

naturally implies ( ) 0p x ³ for all ( ) nx t ÎÂ [18]. Here, 
( )p x is an SOS if there exists a positive semidefinite 

matrix ( )P x  such that 
 

 ˆ ˆ( ) ( ) ( ) ( )Tp x x x P x x x=  (7) 
 

where ˆ( ) R N Nx x ´Î  is a column vector whose entries are 
all monomials in x . This immediately gives Lemma 1.  

Lemma 1 [19]: For a symmetric polynomial matrix 
( )P x  which is nonsingular for all x , we have 
 

 
1

( ) ( ) ( ) ( )
i i

P Px P x x P x
x x

-¶ ¶
= -

¶ ¶
. (8) 

 
Proof: Since ( )P x  is nonsingular, we have 

1( ) ( )P x P x I- = . Differentiating both sides with respect to 
ix  yields  
 

 
1

1( ) ( ) ( ) ( ) 0
i i

P Px P x P x x
x x

-
-¶ ¶

+ =
¶ ¶

.  (9) 

■ 
 
Then, the stability of the overall control system can be 

described as the following theorem. 
Theorem 1: For the system in Eq. (6), suppose that there 

exist an N N´  symmetric polynomial matrix 1( )X x- % , a 
1 N´  polynomial vector ( )M x% , an n N´  polynomial 
matrix 1 0e ³ , and an SOS 2e , such that the following 
two expressions hold. 

 
1( ( ) ( ) )Tv X x x I ve-%  is SOS  (10) 

2

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )

T T

T T TT

k

k J k

T x A x X x X x A x T x
T x B x M x M x A x T xv v

X x A x x x I
x

e
Î

æ ö+
ç ÷
+ +ç ÷-

¶ç ÷- +ç ÷¶è ø
å

% %
% %

% %
 is SOS  (11) 

where 
ˆ ( )

( )ij i

j

x x
T x

x
¶

=
¶

, 1 2{ , , , }mJ j j j= K  denote the 

row indices of ( )B x  whose corresponding row is equal to 
zero, and ( )kA x  is the kth row of ( )A x [19]. Then, the 
state feedback stabilization problem is solvable using a 
feedback control input ˆ( ) ( )SOSK x x x  where 

 
 1( ) ( ) ( ).SOSK x M x X x-= % %   (12) 

 
Proof: Assume that there exist solutions ( )X x%  and 
( )M x%  for Eqs. (10) and (11). Define the Lyapunov 

function ( )V x  as 
 

 1ˆ ˆ( ) ( ) ( ) ( ).TV x x x X x x x-= %   (13) 
 
Then, the time derivative of ( )V x  along the closed-loop 

system trajectories is given by 
 

 

1 1

1

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )
ˆ( )ˆ ˆ( ) ( ) ( ).

T T T

T k

k J k

V x x x X x x x x x X x x x
X xx x A x x x

x

- -

-

Î

= +

¶
+

¶å

& && % %
  (14) 

 
Substituting Eq. (6) into Eq. (14) can be expressed as 
 

1 1

1 1

( ) ( ) ( ) ( ) ( )ˆ ˆ( ) ( ) ( ).
( ) ( ) ( ) ( ) ( )

T T T
T

SOS

K x B x X x A x X x
V x x x x x

X x A x X x B x K x

- -

- -

æ ö+
= ç ÷ç ÷+ +è ø

% %&
% %   

  (15) 
 
Multiplying the above equation from the left and right 

by ( )X x% , and using the result in Lemma 1, we can 
conclude that derivative of Lyapunov function is negative 
definite for all x  considering that 2 ( )x Ie  is included in 
the SOS condition in (11). This proves the stability of the 
closed-loop system.  ■ 

 
 

4. Design of HOSM Observer 
 
In this section, we discuss a HOSM observer for 

estimating the disturbance presented in the actual system. 
The HOSM observer is designed for linear system with 
bounded unknown inputs. Thus, linear system with 
disturbance z  of the crane system in the vicinity of the 
desired equilibrium points can be expressed by using 
( 2 0q »& , cos 1q » , sinq q» , 2sin 0q » ) as 

 

 x Ax Bu D
y Cx

z= + +
=
&

 (16) 

 
where  
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, yÎÂ  is 

output, :z mq= ÎÂ&  is disturbance, and uÎÂ  is the 
control input obtained by the SOS approach as in the 
previous section. The matrix C  is related with the trolley 
position and sway angle and D  is related with the 
disturbance. In order to estimate the disturbance in the 
actual crane system, it is necessary to design an observer. 
Hence, we propose an algorithm which can estimate 
disturbance for linear system. Consider the crane system 
with disturbance, dynamic Eq. (1) is rewritten as 

 
2

2

coscos sin sin

( ) cos

L L

L c L

m g m l u
lx

m m m

qq q q q mq

q

+ - +
=

+ -

& &
&&  

2

2

( )cos sin cos ( ) sin
.

( cos )

L C
L L c

L

L c L

m mm l u m m g
m l

l m m m

q q q q q mq
q

q

+
+ + + -

=
- - +

& &
&&   

 (17) 
 
The structure of the proposed disturbance compensation 

method is shown in Fig. 2. Here, the disturbance estimate 
ẑ  will be obtained in the following subsections. 

 
4.1 State estimation 

 
The crane system containing the disturbance z  in (16) 

has the relative degree n  with respect to the disturbance 
z . To estimate the states, the observer is designed in the 
following form [14]: 

 
 ( )z Az Bu L y Cz= + + -& ,  (18) 
 x̂ x Kv= + ,  (19) 

 ( , )v W y Cz v= -& ,  (20) 
 

where x̂  is the estimate of x . The column matrix L  is 
a correction factor designed so that the eigenvalues of a 
matrix A LC-  have negative real parts. The gain matrix 

1K P-=  and P  can be written as 
 

 
2

1

( )
( )

( )n

C
C A LC
C A LCP

C A LC -

é ù
ê ú-ê ú

-= ê ú
ê ú
ê ú

-ê úë û

M
  (21) 

 
and vector v  and the nonlinear discontinuous function 

1, 2 1{ , , }nW w w w -= K are selected differently. 
Eq. (20) is the high-order sliding mode differentiator. 

The derivatives of the measured outputs can be estimated 
in finite time by the high-order sliding mode differentiator 
[16]. ( 1)n - th-order differentiator can be written in the 
form  

 
1/

1 1 1
n

nv w M v ya= = - -&  

 ( 1)/
1 2( )n nCz sign v yz Cz v-

+ - + +  
1/( 1)

2 2 1 2
n

nv w M va -
-= = -&  

( 2)/ ( 1)
1 2 1 3,( )n nw sign v w v- -

+ - +
M

  (22) 

1/2
1 1 2 1n n nv w M va- - -= = -&  

 1/2
2 1 2 ,( )n n n nw sign v w v- - -+ - +  

1 1( ),n n nv Msign v wa -= - -&  
 

where iv , iz , and iw  are the components of the vector 
v , nzÎÂ , and 1nw -ÎÂ , respectively; M is a 
sufficiently large parameter, the constant ia  is chosen 
recursively sufficiently large as 1 1.1a = , 2 1.5a = , 

3 2a = , 4 3a = , 5 5a = , and 6 8a =  [16]. 
In this way, the asymptotic estimate value ê  can be 

obtained by designing the Luenberger observer method and 

 
Fig. 2. Structure of the proposed disturbance compensation control system 
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high-order sliding mode differentiator that ensures the 
finite time convergence. 

 
4.2 Disturbance estimation 

 
We can obtain internal variables iw  in (22) using the 

values of y, z and iv , 1, ,i n= K . Therefore, the observer 
equation 

 
 x̂ z Pw= +   (23) 

 
is used instead of equation (19). The estimation of the 
disturbance ẑ  is obtained as 

 

 1 1 1 2 2

1
1

1ˆ ( ( )),

( 1) det( )

n n n

n n n
n

v a v a v a v
d

s a s a A LC sI

z +

-

= - + + ××× +

- - ××× - = - - -
 (24) 

 
where 1nd CA D-=  and I  is an identity matrix. Thus, 
we can create a disturbance in the crane system as 

 
 ˆˆ .x xG zW =   (25) 

 
Eq. (3) has two uncertainties xW  and qW , which are 

coupled with each other due to the underactuation 
characteristics of the crane as  

 
 x qW = -YW   (26) 

 
where 2 / cosL Lm l m l qY = - . Therefore, disturbance of 
the system presented in each of the trolley traveling 
motion and sway motion can be compensated altogether 
by estimating only one of the disturbances in both 
systems using HOSM observer. By defining acceleration 
uncertainties as xW  and qW , the overhead crane system 
model in (3) can be rewritten as  

 

 . x x xx F G u
F G uq q qq

-W = +

-W = +

&&
&& . (27) 

 
Thus, by substituting xx -W&&  and qq -W&&  into Eq. (1), 

we can have 
 

 
2

2

cos ( ) ( ) sin 0
cos

L x L L

L x L

m l x m l m gl
m l m l

q

q

q q q
q

-W + -W + =

- W = W

&&&&
  (28) 

 
which leads to Eq. (26). Thus, by combining compensation 
input in (25) and the SOS-based control input 

ˆˆ( ) ( )control SOS xu K x x x= +W  for the crane system with 
disturbance, the disturbance can be compensated, which is 
verified through simulation results in the next section. 

 

5. Numerical Simulations 
 
In this section, we present simulation results to verify 

the performance of the proposed control and disturbance 
compensation methods. The parameters of the crane are 
given as 1000Cm kg= , 1500Lm kg= , 8l m= , and 

29.8 /g m s= . The target position was set to 10m . The 
proposed anti-sway control method based on the estimation 
of the disturbance presented in the crane system consists 
of the design of HOSM observer and the disturbance 
compensation controller. For the linear crane system (16), 
the correction factor [ 64.5, 178.5, 91.5, 85.7]TL = -  
provides the eigenvalues -5, -8.5, -5, -8.5 of the 
matrix A LC- . The matrices 1( )X x- %  and ( )M x%  obtained 
by using Theorem 1 can be written as follows: 

 

 

11 12 13 14

12 22 23 241

13 23 33 34

14 24 34 44

( ) ( )T

P P P P
P P P P

X x P P
P P P P
P P P P

-

æ ö
ç ÷
ç ÷= = = ç ÷
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è ø

%   

 1 2 3 4( ) [ ,  ,  ,  ]M x M M M M=%  
 

where  
 

2
11 3 3 40.023073 0.0015963 2.5695xP x x += -  

312
2

3 40.00445 0.0021635 0.30356x x xP - -= +  

313
20.00023872 0.00021165P x-= -  

314
20.00031793 0.00096435xP -=  

2
22 3 3 40.015922 0.005689 0.054714x x xP = - +  

323
20.00062463 0.0013221xP - +=  

324
20.0024015 0.0012296xP - -=  

2
33 3 3 40.00033881 0.00041309 0.00028211x x xP = - +  

2
34 3 3 40.00054298 0.00021033 0.000065039P x x x+ -=  

2
3 3 4

2
44

4

0.00039005 0.0000035242
       0.000054894 0.00054862

x x x
x

P +
+ +
=  

31
2 2
3 4 40.591 0.0897 1.68 1.54x x xM x- -= - +  

2
2

2
3 3 4 46.48 1.63 20.8 25.3x x xM x- + - -=  

33
2 2
3 4 40.942 0.645 2.34 2.71x x xM x- -= + -  

2 2
3 3 4 44 0.645 2.34 0.841 2.41M x x x x- += + . 

 
Also, the HOSM differentiator can be written as 
 

5/6
1 1 1 1 2

4/5
2 2 2 1 2 1 3

3/4
3 3 2 1 3 2 4

2/3
4 4 3 2 4 3 5

1/2
5 5 5 4 5 4 6

6 6 5

8 ( ) ( ( ) ) ,
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2 ( ) ,
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1.1 ( ).

Zv w v y t C sign v y t Cz v
v w v w sign v w v
v w v w sign v w v
v w v w sign v w v
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= = - - - +
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The disturbance estimate ˆ
xW  is obtained in Eq. (24). In 

Fig. 3, we can see the observer performance and finite-time 
convergence of ˆ

xW  to xW . The estimation error between 
ˆ

xW  and xW  in Fig. 3 shows that SOS-based disturbance 
compensation control can be obtained by obtaining ˆ

xW  
using the HOSM observer. When there is no compensation 
of disturbance, the control performance is much degraded. 
On the other hand, the influence of the disturbance 
presented in the system is removed using the proposed 
method. These results verify the advantages of the 
proposed algorithm. 

 
 

6. Conclusion 
 
In this paper, we proposed SOS-based control method 

and HOSM observer design for the anti-sway control of 
the overhead crane system with disturbance. First, we 
considered separately the disturbance in the trolley 
traveling motion and sway motion of the overhead crane 
system. By estimating the disturbance in the sway motion 
via HOSM observer, we have shown that it is possible to 
compensate both the disturbances in the entire system. 

Then, we obtained the SOS-based anti-sway controller of 
the overhead crane system using the disturbance estimate. 
HOSM observer has advantages in that global finite-time 
exact observation of the state and finite-time exact 
identification of disturbance can be achieved by using 
HOSM differentiator. We have shown that the proposed 
methods can maintain the satisfactory performance of the 
overhead crane system with disturbance. 
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