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Abstract – System failures in thermal power plants (TPPs) can lead to serious losses because the 
equipment is operated under very high pressure and temperature. Therefore, it is indispensable for 
alarm systems to inform field workers in advance of any abnormal operating conditions in the 
equipment. In this paper, we propose a clustering-based fault detection method for steam boiler tubes 
in TPPs. For data clustering, k-means algorithm is employed and the number of clusters are 
systematically determined by slope statistic. In the clustering-based method, it is assumed that normal 
data samples are close to the centers of clusters and those of abnormal are far from the centers. After 
partitioning training samples collected from normal target systems, fault scores (FSs) are assigned to 
unseen samples according to the distances between the samples and their closest cluster centroids. 
Alarm signals are generated if the FSs exceed predefined threshold values. The validity of 
exponentially weighted moving average to reduce false alarms is also investigated. To verify the 
performance, the proposed method is applied to failure cases due to boiler tube leakage. The 
experiment results show that the proposed method can detect the abnormal conditions of the target 
system successfully. 
 
Keywords: Thermal power plant, Boiler tube leakage, Fault detection, k-means clustering, Slope 
statistic  

 
 
 

1. Introduction 
 
The importance of condition monitoring and fault 

detection (FD) techniques has been growing for effective 
operation and performance improvement of various 
industrial processes such as aircraft, train, automobile, 
chemical factory and power plant. Fault is defined as an 
unpermitted deviation of at least one characteristic property 
or variable of a system from acceptable/usual/standard 
behavior [1]. Fault can result in system malfunctions and 
failure. In particular, system failures in thermal power 
plant (TPP) equipment with very high operating pressure 
and temperature can cause severe loss of life and materials. 
Monitoring and FD systems that can detect in advance the 
abnormal conditions of power plant units are essential for 
ensuring the safety, reliability and availability of power 
plants. The main objective of FD systems is to detect the 
abnormal operation conditions of power plants by 
analyzing complex and nonstationary behaviors of process 
parameters, and help field workers execute proper actions 
at the initiatory stage of faults. 

Recently, as distributed control systems (DCSs) are built 
in power plants, massive operation data can be collected 
and managed efficiently. In DCS, historical operation data 
composed of various process variables is stored in discrete 
time intervals. The explosive growth of historical data has 
boosted efforts to extract useful knowledge from the data 
related to equipment health and maintenance information. 

As described in Fig. 1, process monitoring procedures 
are basically performed in four steps [2]: FD, fault 
identification, fault diagnosis and system recovery. FD 
determines whether a fault has occurred. Fault identification 
confirms process variables in connection with the fault. 
Fault diagnosis identifies the type of fault. Finally, after 
removing the cause of the fault, the monitoring loop is 
closed. In this paper, the focus is on FD only. 

The following summarizes several previous studies on 
condition monitoring and FD methods for TPPs using 
data mining techniques. Ajami and Daneshvar [2] used 
multivariate statistical signal processing techniques, such 
as principal component analysis and independent component 
analysis (ICA), for FD and diagnosis of TPP turbine 
systems. Hsu and Su [3] developed a method that combines 
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ICA and exponentially weighted moving average (EWMA) 
for early detection of TPP malfunctions at Taiwan Power 
Company. Cai et al. [4] introduced an on-line performance 
monitoring method for coal-fired power units, such as 
boilers and turbines, using support vector machine (SVM). 
Chen et al. [5] proposed a SVM-based method with 
dimension reduction schemes based on correlation analysis 
and decision tree to analyze turbine failures in thermal 
power facilities. Shashoa et al. [6] presented a data-driven 
FD and isolation approach for a steam separator at TEKO 
B1 Kostolac TPP using robust process identification 
procedures and Neyman-Pearson hypothesis test. Li et al. 
[7] presented a monitoring and fault diagnosis method 
for leak detection of feedwater heaters in coal-fired 
plants using group method of data handling based on 
ridge regression. Prasad et al. [8] proposed a performance 
monitoring strategy based on neural network and histogram 
plots to economize the operation of a 200 MW oil/gas-fired 
TPP. Guo et al. [9] reported a condition monitoring and 
FD method for tube-ball mills of coal-fired plants using a 
multi-segment mathematical model whose parameters are 
identified by genetic algorithms. 

Although various statistical and machine learning 
techniques have been applied for condition monitoring and 
FD of TPP components, what seems to be lacking is 
attempts to use clustering-based FD methods for TPPs. In 
this paper, we propose a clustering-based FD method for 
tube leakage of steam boilers in TPPs. In classification-
based approaches (e.g., SVM), labeled learning samples 
should be prepared to train binary classifiers. To prepare 
the labeled samples, experts determine whether arbitrary 
samples are normal or fault after checking historical 
operation data. When there are many monitored variables, 
this labeling procedure is a difficult and time-consuming 
process. On the other hand, clustering-based methods can 
find the hidden structure of unlabeled learning samples, 
and perform FD in unsupervised mode. Clustering-based 
methods that do not need pre-labeled samples have been 
widely applied to engineering fields, such as financial 
domain [10], network intrusion detection [11, 12], anomaly 
detection in surveillance videos [13] and steel industry [14]. 
In the proposed method, it is assumed that normal samples 
are close to cluster centroids and abnormal samples are far 
from the centroids. For data clustering, k-means algorithm 
with Euclidean distance is employed and slope statistic 
[15] proposed by Fujita is used to systematically determine 
the number of clusters. Slope statistic can handle situations 
when there is a dominant cluster in training samples, when 
the samples are not a mixture of Gaussian distributions, 
and when the dimensions of the samples are high. 

After partitioning training samples gathered from normal 
target systems into several groups, fault scores (FSs) are 
assigned to unseen samples based on the distances between 
the samples and their closest centers. Using 95th, 97th and 
99th percentiles, threshold values of FSs are calculated and 
alarm signals occur when the FSs of unseen samples are 

larger than the threshold values. The validity of EWMA for 
reducing false alarms is also investigated. In order to 
evaluate the performance, the proposed method is applied 
to collected dataset from the DCS of 200 MW TPP. The 
dataset corresponds to two failure cases due to boiler tube 
leakage. The simulation results show that the proposed 
method can detect the tube leakage in the early stages. 

The remainder of this paper is organized as follows. 
Section 2 briefly summarizes k-means clustering algorithm 
and silhouette and slope statistics. In Section 3, FS 
assignments, their threshold settings and EWMA that 
consider the trends of FSs are explained. Section 4 
describes the target system, a 200 MW coal-fired TPP, and 
the tube leakage in steam boiler. Section 5 shows the 
simulation results of the two failure cases and finally, 
Section 6 presents concluding remarks. 

 
 

2. Data Clustering Algorithm 
 
Data clustering techniques classify similar training 

samples into several groups or clusters and can find the 
hidden structure of unlabeled training samples. 

 
2.1 k-Means Clustering Algorithm 

 
The k-means algorithm [16, 17] partitions n given 

vectors xj, j = 1,..., n, into c groups (also called as clusters) 
Gi, i = 1,..., c, and finds cluster centers ci, i = 1,..., c, that 
minimize the objective function defined as follows: 
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where ||·|| denotes Euclidean distance and Ji is an objective 
function value of the ith cluster, which depends on its 
geometrical data structure and center position. The 
partitioned samples are described by c by n binary 
membership matrix U whose ith row and jth column, uij, is 
1 if the jth sample, xj, belongs to the ith cluster, and 0 
otherwise. Matrix U satisfies the following properties: 
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After cluster centers ci, i = 1,..., c, are fixed, uij is defined 

as 
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In other words, if the ith center is the closest center of 
the jth sample, the latter is included in the ith group. After 
determining uij, optimal centers ci that minimize the 
objective function are calculated as 
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where |·| denotes the size of a set. As explained above, in k-
means algorithm, cluster centers ci and membership matrix 
U are determined through iterative procedures (see [16] for 
more on this). 

 
2.2 Silhouette statistic 

 
The concept of silhouette [18] proposed by Rousseeuw 

is a useful tool for verifying how well the training samples 
are grouped. The silhouette plot not only provides validity 
to the clustering results but also outlines the target data 
structure. Silhouette statistic, an averaged value of each 
sample’s silhouette value, can be employed to determine 
the proper number of clusters. 

Suppose that n training samples xj, j = 1,..., n, are 
grouped into c clusters Gi, i = 1,..., c, and the jth sample 
belongs to the ith cluster. In order to calculate silhouette 
value s(j) for the jth sample, let us define average 
dissimilarity a ( j) (i.e., inner dissimilarity) between the jth 
sample and all elements of the ith cluster, with the 
exception of the jth sample, as 
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where x ≠ xj. The average dissimilarity between the jth 
sample and all elements of the kth cluster, with the 
exception of the ith cluster, d (xj, Gk), for k = 1,..., c, k ≠ i, 
is also defined as 
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After calculating d (xj, Gk), their minimum value (i.e., 

inter dissimilarity) is denoted by 
 

 ( ) min ( , ),    for each ,j kk
b j d G k i= ≠x  (8) 

 
where Gk, whose d (xj, Gk) is minimum, is called as the 
second-best choice cluster. The silhouette value s ( j) of the 
jth sample is calculated as 
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Silhouette values s(j), j = 1,..., n, are in the range of [−1, 

1] and they can be combined into a silhouette plot that 
graphically represents clustering results. Let us exemplify 

three extreme situations to deeply understand the meaning 
of a silhouette value. The first case is that where s ( j) is 
close to 1. This implies that inner dissimilarity is much 
smaller than inter dissimilarity, i.e., a ( j) ≈ b ( j). In this 
case, we can conclude that the jth sample is included in a 
proper cluster. In the second situation, s(j) is approximately 
0, i.e., a ( j) ≈ b ( j), and thus it is uncertain whether the jth 
sample should be assigned to the ith or second-best choice 
cluster. Lastly, the third case is the worst case, where s(j) is 
close to −1. In this situation, it is valid to not classify the 
jth sample into the ith cluster but the second-best choice 
cluster. 

The silhouette statistic used to determine the proper 
number of clusters is defined as 
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After calculating the silhouette statistics for c = 2, 3,..., 

the number of clusters that maximizes them is finally 
selected. 

 
2.3 Slope statistic 

 
Slope statistic [15], proposed by Fujita et al., is based on 

the silhouette statistic described in the previous subsection. 
The basic idea of slope statistic is that the optimal cluster 
number has the maximum silhouette statistic and if the 
cluster number is larger than the optimum, the silhouette 
statistic decreases sharply. Based on this idea, slope 
statistic is defined as 

 
 ˆ( ) [ ( 1) ( )] ( ) ,ps c s c s c s c= − + −  (11) 

 
where p is a positive constant and controls the weight size 
for the two terms, ( )s c and ( 1) ( )s c s c+ − . The reason for 
employing the silhouette approach in the construction of 
slope statistic is that the former considers both the inner 
and inter dissimilarity of each target sample. Using slope 
statistic, the proper number of clusters is determined as 

 

 
* arg max [ ( 1) ( )] ( ) ,    2,3,...p

c
c s c s c s c c= − + − =  (12) 

 
In this paper, the cluster number that maximizes slope 

statistic is determined for k-means clustering. 
 
 

3. Clustering-Based Fault Detection 
 
In the clustering-based FD method, after applying k-

means algorithm to normal samples, unseen samples that 
do not match with the normal samples are regarded as fault 
samples. The advantages of clustering-based techniques are 
that FD can be performed in unsupervised mode and the 
computation time in the test phase is fairly short [19]. 
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3.1 Fault score 
 
In order to detect fault samples, FSs are assigned to 

unseen samples according to the distances between the 
samples and their closest cluster centers [20]. The 
following describes the procedures for imposing FS on a 
new sample xnew. First, among c cluster centers, the nearest 
center ck to xnew is found by 

 

 newarg min ,    1,..., .
i

k i i c= − =
c

c c x  (13) 
 
Subsequently, the average distance lk between ck and the 

training samples included in Gk is calculated as 
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Finally, the FS of xnew is defined as 
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FS measures the ratio of the dissimilarity between xnew 

and its nearest center ck to the average distance lk. The 
larger FS, the farther xnew is from its closest center. As 
explained in the next subsection, if FS exceeds the 
predefined threshold values, the corresponding samples are 
determined as fault samples and alarm signals are generated. 

 
3.2 Threshold setup for fault score 

 
This subsection provides the procedures to set up 

threshold value T for alarm signal generation. First, as 
presented in (14), mean distances lk, k = 1,..., c, are 
calculated. Subsequently, FS is imposed on each training 
sample using (15). In other words, FSs, FSj, j = 1,..., n, of 
the training samples are calculated by substituting the jth 
training sample xj into (15) instead of xnew. Finally, 
threshold values of FS are determined using FSj. 

In clustering-based FD, only the upper threshold value 
is considered because the possibility of fault increases 
when FS is large. Upper threshold T = m + ζσ is generally 
used when FSj follow Gaussian distribution, where m and 
σ are the mean and standard deviation of FSj, respectively, 
and ζ is a positive integer [1]. The probability that FS of 
an arbitrary sample exceeds the upper threshold is equal 
to 0.07933, 0.011375 and 0.000675 for ζ = 1, 2, and 3, 
respectively. As shown in Section 5, FSj follow a 
distribution where the right tail is longer than the left. In 
this paper, the 95th, 97th and 99th percentiles of FSj are 
employed as threshold values for FD. 

 
3.3 Exponentially weighted moving average 

 
In the test phase, if an alarm signal is generated based 

only on the current FS, it is assumed that the current and 
previous FS are independent. In this case, the false alarm 
rate could increase because alarm signals occur regardless 
of the historical trend. In this paper, EWMA, which is 
widely used to smooth a time-series data, is employed to 
consider the trend of FSs. EWMA gives more weights to 
latest time-series and these weights decrease exponentially 
for older data. Using EWMA, the smoothed version of FSs 
at time t, EWMAw(t), is calculated as 
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where FS(t) is FS at time t, α is a smoothing factor 
commonly calculated by 2

1wα += and w is window size. 
After calculating EWMA, an alarm signal is generated if it 
exceeds predefined threshold values. Alarm signal 
generation using EWMA could reduce false alarms because 
historical trends of FSs are considered. 

 
3.4 Overview of the proposed approach 

 
Table 1 summarizes the procedure for the proposed 

clustering-based FD approach. The procedure is divided 
into “training” and “test” phases. In the “training” phase, 
after determining the proper number of clusters, the 
training samples collected from the normal target system 
are partitioned using k-means algorithm. Subsequently, the 
FS of each training sample is calculated and three threshold 

Table 1. Clustering-based FD algorithm 

 
Input: Multivariate training and test samples, Xtrn and Xtest 
Cmax ← maximum number of clusters 
w ← window size of EWMA 

“Training”
phase 

for c from 2 to Cmax 
Partition Xtrn into c groups using k-means algorithm 
Calculate the silhouette statistic using (10) 

end 
Calculate the slope statistic using (11) 
Determine the optimal number of cluster, c*, using (12) 
Partition Xtrn into c* groups using k-means algorithm 
For each cluster, calculate the average distance, lk, between ck

and kG∈x using (14) 
Calculate FSj, j = 1,..., |Xtrn|, for each training samples using 
(15) 
Set the threshold values, T95th, T97th and T99th using percentiles 
of FSj 

“Test”
phase

for t from 1 to |Xtest| 
Find the closest center of tth test sample 
Calculate fault score FS(t) using (15) 
Calculate EWMAw(t) using (16) 
if FS(t) ≥ T95th (or EWMAw(t) ≥ T95th) 

Generate ‘Caution’ alarm 
else if FS(t) ≥ T97th (or EWMAw(t) ≥ T97th) 

Generate ‘Alert’ alarm 
else if FS(t) ≥ T99th (or EWMAw(t) ≥ T99th) 

Generate ‘Critical’ alarm 
end 

end 
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values (i.e., 95th, 97th and 99th percentiles) are set up. 
Depending on the strength of FS, three different alarm 
signals (i.e., “Caution”, “Alert” and “Critical”) are 
generated. In the “test” phase, after assigning FS to each 
test sample, alarm signals occur sequentially. If EWMA is 
not used, an alarm signal for each test sample is generated 
independently according to the strength of FS. If EWMA is 
employed, after calculating EWMAw(t) using (16), three 
different alarms are generated. 

 
 
4. Description of Target System: 200 MW Coal-

Fired Power Plant 
 
The target system of this study is a 200 MW coal-fired 

TPP. Fig. 2 shows an example of the DCS screen in the 
plant. To verify the performance, the proposed method is 
applied to two failure cases collected from the target DCS. 

 
4.1 Coal-fired thermal power plant 

 
In the coal-fired power plant, after transforming 

feedwater into steam through the thermal energy produced 
from the combustion of bituminous coal, electricity is 

generated by driving the steam turbine and generator. Fig. 
3 shows a simplified schematic diagram of the target TPP. 
The steam boiler raises steam by heating feedwater using 
thermal energy converted from fossil fuel. The steam boiler 
follows the thermodynamic steam cycle, i.e., Rankine cycle, 
which is a practical implementation of the ideal Carnot 
cycle [21]. Steam, an important medium for producing 
mechanical energy, can be generated from abundant water, 
does not react much with the materials of the power plant 
equipment and is stable at the required operation 
temperature in the power plant [22]. 

Bituminous coal pulverized in advance is transformed 
into thermal energy at the steam boiler furnace. Before 
flowing into the drum, feedwater is preheated by passing 
through a series of low- and high-pressure heaters and 
economizer. The heater and economizer raise feedwater by 
extraction steam from the turbine and high-temperature 
flue gas, respectively. These preheating steps improve the 
efficiency of the entire cycle. The drum supplies feedwater 
that will be converted to steam and temporarily stores the 
steam produced by the evaporator. The saturated steam by 
evaporator contains a small amount of moisture. A 
superheater converts the steam into the high-purity and 
high-pressure and temperature superheated steam that will 
be supplied to the turbine. 

In the turbine, the superheated steam expands, turbine 
blades are rotated and thermal energy is transformed into 
mechanical energy. The rotating turbine blades drive the 
electric generator and three-phase electric power is 
generated. After performing mechanical works at the high-
pressure turbine, the steam is reheated by a reheater and 
supplied to the intermediate-pressure turbine. The steam 
that exits from the low-pressure turbine is condensed into 
condensate water and stored at a condenser’s hotwell. The 
condensate water is boosted by a condensate pump and it 
passes through a low-pressure feedwater heater. Sub-
sequently, the water is deaerated by a deaerator and 
boosted by the feedwater pump. The boosted water passes 
through a high-pressure heater and economizer and it is fed 
into the boiler again. 

 
4.2 Boiler tube leakage 

 
Failure from one or more tubes in the boiler can be 

detected by sound and either by an increase in the make-up 
water requirement (indicating a failure of the water-
carrying tubes) or by an increased draft in the superheater 
or reheater areas (due to failure of the superheater or 
reheater tubes) [23]. The boiler tubes can be influenced by 
several damage processes such as inside scaling, waterside 
corrosion and cracking, fireside corrosion and/or erosion, 
stress rupture due to overheat and creep, vibration-induced 
and thermal fatigue cracking, and defective welds [24]. 

Tube leakage from a pin-hole might be tolerated because 
of an adequate margin of feedwater and the leakage can be 
corrected after suitable scheduled maintenance. However, 

Fig. 2. Example of DCS screen in 200 MW coal-fired 
power plant 
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if the boiler is continuously operated with the leakage, 
much of the pressurized fluid will eventually leak and 
cause severe damage to neighboring tubes. Tube leakage of 
boiler, superheater and reheater could result in a serious 
efficiency decline. In the short term, tube leakage of 
superheater and reheater is more serious than that of boiler. 
When severe tube leakage occurs, maintaining the boiler 
drum level properly is difficult. If leaking water is spilled 
onto the furnace, coal combustion is disturbed. In these 
cases, the plant should be shut down immediately. 

In this paper, two unplanned shutdown cases due to 
boiler tube leakage are employed to demonstrate the 
validity of the proposed method. 

 
 

5. Experiment Results 
 
This section provides the results of applying the 

proposed clustering-based FD approach to the two 
unscheduled shutdown cases. 

 
5.1 Data preparation 

 
Table 2 lists the number of training and test samples and 

number of monitored variables for the two failure cases. In 
Table 2, each sample is recoded in 5-minute intervals and 
the training samples are gathered from a normally 
operating target system. After applying the “training” phase 
in Table 1 to the training samples, the performance of the 
proposed approach is evaluated by the test samples. Among 
hundreds of variables, 13 monitored variables are selected 
based on expert knowledge to detect boiler tube leakage at 
an early stage. The same variables are selected in Cases 1 

and 2. Table 3 summarizes the 13 monitored variables 
selected by human experts. 

Before performing data clustering, z-score standardi-
zation is applied to each variable as 

 

 
[ ]
[ ]

* ,    1,...,13,i
i

i

X E X
X i

STD X
−

= =  (17) 

 
where X and X* are the original and standardized values, 
respectively, and E[·] and STD[·] are the expectation and 
standard deviation operators, respectively. After standardi-
zation, the mean and variance of each variable are equal to 
0 and 1, respectively. One of the reasons for applying 
standardization is that the values of the mean and variance 
of each variable are different from each other. 

 
5.2 Determining proper number of clusters 

 
In this study, as described in subsection 2.3, slope 

statistic is employed to determine the proper number of 
clusters. After partitioning the training samples and 
calculating the silhouette statistic with an increase in the 
number of clusters from c = 2,..., Cmax, the slope statistic is 
computed, where Cmax and positive constant p in (11) are 
set to 10 and 2, respectively. Figs. 4 and 5 show the plot of 
the number of clusters versus the silhouette and slope 
statistics in Cases 1 and 2, respectively. As shown in Figs. 
4 and 5, the numbers of clusters that maximize the slope 
statistic in Cases 1 and 2 are 3 and 2, respectively. We can 
confirm that the slope statistic drops sharply in Cases 1 and 
2 when the numbers of clusters increase from 3 to 4 and 2 
to 3, respectively. In Cases 1 and 2, the training samples 

Table 2. Summary from two unplanned shutdown cases 
due to boiler tube leakage 

 No. of training 
samples 

No. of test 
samples 

No. of monitored 
variables 

Case 1 2880 1165 13 continuous variables
Case 2 4320 1741 13 continuous variables

 
Table 3. Summary of monitored variables for boiler tube 

leakage in 200 MW TPP 
Notation Tag ID Description Unit

X1 12DH-MW Generator output MW
X2 2UL 10DP001 DXJ51 Steam flow t/h 
X3 2MS PT 2 4 CXJ51 Main steam pressure kg/cm2

X4 2MS 10EU001 DXJ51 Main steam temperature oC 
X5 2CR PT 01A CXQ50 Reheater pressure kg/cm2

X6 2RH 10DT001 DXJ51 Reheater temperature oC 
X7 2FG 10DP001 DXJ51 Furnace pressure kg/cm2

X8 2FW 10DL001 DXJ51 Drum level m 
X9 2CM PT 04 CXQ50 Condenser pressure kg/cm2

X10 2CM FT 01 CXQ50 Condenser make-up flow t/h 
X11 2FW 10DF001 DXJ52 Feedwater flow t/h 
X12 2FC 01DS001 DXJ51 Fuel supply t/h 
X13 2AM 10DS001 DXJ52 Air supply m3/h
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Fig. 4. Silhouette and slope statistics for Case 1:  

(a) Silhouette statistic; (b) Slope statistic 
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are respectively grouped into 3 and 2 clusters using k-
means algorithm. Fig. 6 shows the silhouette plots for the 
results of clustering in Cases 1 and 2. In Fig. 6, the samples 
whose silhouette values are negative are indicated by 
dotted red lines. It is appropriate for these samples to be 
classified into second-best choice clusters. Fig. 7 shows the 
results of applying k-means clustering to the training 
samples of Cases 1 and 2 in a three-dimensional space (i.e., 
X5, X10 and X11). 
 
5.3 Threshold values of fault score 

 
As described in subsection 3.2, after performing k-means 

clustering, the FS of each training sample is calculated and 
the threshold values are also determined. The distribution 
of the FSs is asymmetric, where the right tail is longer than 
the left. In this paper, 95th, 97th and 99th percentiles are 
employed for setting the threshold values. Fig. 8 shows the 
histograms of FSs of the training samples and their 
percentiles in Cases 1 and 2. In Fig. 8, solid red lines 
indicate nonparametric kernel smoothing of the histograms 

of FSs and vertical dotted yellow-green, blue and red lines 
correspond to the 95th, 97th and 99th percentiles of FSs, 
respectively. In Cases 1 and 2, the calculated 95th, 97th 
and 99th percentiles are 1.6986, 1.8499 and 2.2570, and 
1.6499, 1.8821 and 2.2766, respectively. The reason for 
calculating three different percentiles is to generate diverse 
alarms based on the strength of FSs. For example, for an 
unseen sample, if its FS exceeds the 95th, 97th or 99th 
percentile, the “Caution”, “Alert” or “Critical” alarm 
occurs. 

 
5.4 Results of fault detection 

 
In Case 1, EWMA is not employed because of its low 

false alarm rate. As explained in the previous subsection, 
after setting the threshold values, the FSs of unseen 
samples are calculated and alarm signals are generated 
when FSs exceed the threshold values. FS of a normal 
sample do not exceed threshold values. Fig. 9 shows the 
FSs of test samples in Case 1 and their alarm signals. In 
Fig. 9, unscheduled shutdown time due to boiler tube 
leakage is indicated by vertical solid dotted red lines. The 
horizontal dotted yellow-green, blue and red lines shown in 
Fig. 9 (a) represent the 95th, 97th and 99th percentiles, 
respectively, and “Caution”, “Alert” and “Critical” alarms 
are indicated by yellow-green circles, blue triangles and 
red points, respectively. In Fig. 9 (b), there are several 
improbable false alarms ignored in the real DCS. Fault 
regions where alarm signals occur intensively are indicated 
by shaded red regions and enlargements of such regions 
and their neighborhood are presented in Figs. 10 and 11. 

As shown in Figs. 9 (a) and 10, for a period that lasts 
approximately 3 hours, alarm signals occur intensively 
approximately 66 hours before the unplanned shutdown 
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Fig. 6. Silhouette plots: (a) Case 1; (b) Case 2 
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due to tube leakage. In Fig. 11, because of the dramatic 
increases of FSs, alarm signals are generated for 30 
minutes immediately before the unscheduled shutdown. 
Fig. 12 shows fault samples that correspond to “Critical” 
alarms of the fault regions 1 and 2 in a three-dimensional 
space (i.e., X5, X10 and X11). As shown in Fig. 12, the 
behavior of the fault samples with “Critical” alarms is 
extremely inconsistent with that of the normal samples. In 
the fault region 1, intensive “Critical” alarms occur 
because of abnormal patterns of the reheater pressure and 
feedwater flow. The fault region 2 is an early warning 
region where the condenser make-up flow increases 
enormously. 

In Case 2, EWMA is employed for alarm signal 
generation. In EWMA, window size w in (16) is set to 6, 
i.e., the six most recent FSs from past to present are 

considered for calculating the present EWMA value for FD. 
Fig. 13 represents FSs and their EWMA values for the test 
samples in Case 2 and their alarm signals. In Fig. 13, 
vertical solid dotted red lines indicate the unplanned 
shutdown time caused by tube leakage. In Fig. 13 (a), the 
95th, 97th and 99th percentiles are denoted by yellow-
green, blue and red dotted horizontal lines, respectively, 
and EWMA values of FSs are indicated by a solid purple 
line. Figs. 13 (b) and (c) correspond to alarm signals 
without and with EWMA, respectively. Compared with Fig. 
13 (b), numerous implausible false alarms are removed in 
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Fig. 10. Enlargement of “fault region 1” in Fig. 9: (a) FSs;
(b) alarm signals 
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Fig. 11. Enlargement of “fault region 2” in Fig. 9: (a) FSs;
(b) alarm signals 
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Fig. 13 (c). The main reason is that the trend of FSs is 
considered in the EWMA-based FD. The shaded red 
regions in Fig. 13 (a) designate two fault regions where 
considerable alarm signals occur and magnification of the 
regions and their vicinity is illustrated in Figs. 14 and 15. 

As illustrated in Figs. 13 (a) and 14, for a period that 
lasts approximately 40 hours, alarm signals occur 
intensively approximately 4 days before the unscheduled 
shutdown. In Fig. 15, “Caution” and “Critical” alarms 
occur considerably approximately 3 hours and 40 minutes 
immediately before the unplanned shutdown, respectively. 
Fig. 16 illustrates fault samples with “Critical” alarms of 
the fault regions in a three-dimensional space. As indicated 
in Fig. 16, the geometric patterns of the fault samples are 
completely dissimilar from those of normal samples. In the 
fault region 1, considerable “Critical” alarms occur because 
the reheater pressure and feedwater flow decline rapidly 
and the condenser make-up flow increases sharply. The 
fault region 2 corresponds to an early warning region 
where the condenser make-up flow increases gradually. 

 
5.5 Performance evaluation and comparison 

 
In this subsection, we present the results of the 

performance comparison between the proposed method and 

PCA-based fault detection method using four evaluation 
measures. The closer the evaluation measures are to 1, the 
better the results are. The PCA-based method has been 
successfully applied to technical processes such as 
centrifugal chiller [25], thermal power plant [2], helical 
coil steam generator [26], continuously stirred tank reactor 
[27] and self-powered neutron detectors [28]. For the test 
samples, the four evaluation measures, i.e., accuracy 
(ACC), sensitivity (SEN), specificity (SPE), and precision 
(PRE), are calculated as follows [20]: 

 

 ACC ,TP TN
P N
+
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Fig. 14. Enlargement of “fault region 1” in Fig. 13: (a) FSs;
(b) alarm signals without EWMA; (c) alarm signals
with EWMA 
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Fig. 15. Enlargement of “fault region 2” in Fig. 13: (a) FSs;
(b) alarm signals without EWMA; (c) alarm signals
with EWMA 
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 SEN ,TP
P

=  (19) 

 SPE ,TN
N

=  (20) 

 PRE ,TP
TP FP

=
+

 (21) 

 
where 

P the number of fault samples; 
N the number of normal samples; 
TP the number of samples correctly detected as fault 

samples; 
TN the number of samples correctly determined as 

normal samples; 
FP the number of samples incorrectly detected as fault 

samples; 
FN the number of samples incorrectly determined as 

normal samples. 
 
In PCA, the cumulative percent variance technique is 

used to decide the proper number of principal components, 
and Hotelling’s 2T  statistic is employed for fault detection 
index. If the 2T  statistics of test samples are larger than 
or equal to 2Tα , where α = 1%, the samples are detected as 
fault samples. In the proposed method, the samples that 
satisfy the condition, FS( t)≥T99th (or EWMAw(t) ≥ T99th), 
are decided as fault samples. Tables 4 and 5 summarize the 
results of performance comparison in Cases 1 and 2, 
respectively. As listed in Tables 4 and 5, with the exception 
of sensitivity, the proposed method exhibits superior 
performance compare to PCA-based method. 

 
 

6. Conclusion 
 
In this paper, a clustering-based FD method was 

proposed for the steam boiler in a 200 MW TPP. Failure 
cases due to boiler tube leakage were collected from the 
target DCS and main monitored variables for leakage 
detection were selected based on expert empirical 
knowledge. In the proposed method, after applying k-

means algorithm to training samples, FSs are assigned to 
test samples based on the distances between the samples 
and their closest cluster centers. To determine the proper 
number of clusters, slope statistic, an advanced version of 
silhouette statistic, is employed. The 95th, 97th and 99th 
percentiles for FSs of the training samples were used for 
threshold settings and three different alarm signals for 
unseen samples were generated according to the strength of 
their FSs. In a second failure case, EWMA was used to 
consider the trend of FSs. 

The main advantages of the proposed method are 
summarized as follows. First, the proposed method did not 
require labeled training samples because unsupervised 
learning was employed. Second, the computation time in 
the test phase was fairly short because simply calculating 
the distance between unseen samples and their nearest 
cluster centers were required. In addition, more flexible FD 
was possible based on the strength of FSs because three 
different threshold values were set up using the 95th, 97th 
and 99th percentiles. Lastly, using EWMA to consider the 
trend of FSs, false alarms could be easily reduced. 

To demonstrate the effectiveness, the proposed method 
was applied to collected failure cases. The experiment 
results showed that the proposed method can detect fault 
samples whose features are markedly different from those 
of normal samples. In addition, early detection of faults 
immediately before an unplanned shutdown was achieved 
successfully. 

In this work, we only focus on FD that determines 
whether a fault has occurred. In future research, we will 
combine fault identification step with the proposed method 
to confirm monitored variables relevant to the fault. 
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