DOI QR코드

DOI QR Code

Wavefront Compensation Using a Silicon Carbide Deformable Mirror with 37 Actuators for Adaptive Optics

적응광학계용 37채널 SiC 변형거울을 이용한 파면 보상

  • Ahn, Kyohoon (Science of Measurement, University of Science and Technology) ;
  • Rhee, Hyug-Gyo (Science of Measurement, University of Science and Technology) ;
  • Lee, Ho-Jae (Applied Optics & Energy R&D Group, Seonam Regional Division, Korea Institute of Industrial Technology) ;
  • Lee, Jun-Ho (Department of Optical Engineering, Kongju National University) ;
  • Yang, Ho-Soon (Science of Measurement, University of Science and Technology) ;
  • Kihm, Hagyong (Science of Measurement, University of Science and Technology)
  • 안교훈 (과학기술연합대학원대학교 측정과학과) ;
  • 이혁교 (과학기술연합대학원대학교 측정과학과) ;
  • 이호재 (한국생산기술연구원 서남지역본부 광에너지융합그룹) ;
  • 이준호 (공주대학교 광공학과) ;
  • 양호순 (과학기술연합대학원대학교 측정과학과) ;
  • 김학용 (과학기술연합대학원대학교 측정과학과)
  • Received : 2016.03.04
  • Accepted : 2016.05.10
  • Published : 2016.06.25

Abstract

In this paper, we deal with the wavefront compensation capability of a silicon carbide (SiC) deformable mirror (DM) with 37 actuators for adaptive optics. The wavefront compensation capability of the SiC DM is predicted by computer simulation and examined by actual experiments with a closed-loop adaptive optics system consistsing of a light source, a phase plate, a SiC DM, a high speed Shack-Hartmann sensor, and a control computer. Distortion of wavefront is caused by the phase plate in the closed-loop adaptive optics system. The distorted wavefront has a peak-to-valley (PV) wavefront error of $0.3{\mu}m{\sim}0.9{\mu}m$ and root-mean-square (RMS) error of $0.06{\mu}m{\sim}0.25{\mu}m$. The high-speed Shack-Hartmann sensor measures the wavefront error of the distortion caused by the phase plate, and the SiC DM compensates for the distorted wavefront. The compensated wavefront has residual errors lower than $0.1{\mu}m$ PV and $0.03{\mu}m$ RMS. Consequently, we conclude that we can compensate for the distorted wavefront using the SiC DM in the closed-loop adaptive optics system with an operating frequency speed of 500 Hz.

본 논문에서는 37채널을 갖는 적응광학계용 SiC(Silicon Carbide) 변형거울의 파면 보상 성능 검증에 관한 내용을 다룬다. 컴퓨터 시뮬레이션을 통해 SiC 변형거울의 파면 보상 성능을 예측하였고, 실제 closed-loop 적응광학계를 구성하여 파면 보상 성능을 확인 하였다. Closed-loop 적응광학계는 광원, 위상판, SiC 변형거울, 고속 샥-하트만 센서 그리고 제어용 컴퓨터로 구성되어있다. 회전하는 위상판에 의해 왜곡된 파면을 샥-하트만 센서로 측정하고, SiC 변형거울을 이용하여 왜곡된 파면을 보상해주는 시스템이다. 결과적으로 closed-loop 적응광학계에서 500 Hz의 속도로 PV(Peak-to-Valley) $0.3{\mu}m{\sim}0.9{\mu}m$, RMS(Root-Mean-Square) $0.06{\mu}m{\sim}0.25{\mu}m$의 왜곡된 파면을 PV $0.1{\mu}m$, RMS $0.03{\mu}m$이하로 보상시킬 수 있었다.

Keywords

References

  1. J. W. Hardy, "Adaptive optics for astronomical telescopes," (Oxford University Press, NY, USA, 1998).
  2. R. A. Muller, and A. Buffington, "Real-time correction of atmospherically degraded telescope images through image sharpening," J. Opt. Soc. Am. 64, 1200-1210 (1974). https://doi.org/10.1364/JOSA.64.001200
  3. Y. S. Seo, S. H. Baik, S. K. Park, and C. J. Kim, "Closed-loop adaptive optics system for wave-front correction," Journal of Korean Physical Society 39, 891-894 (2001).
  4. E. J. Fernandez, I. Iglesias, and P. Artal, "Closed-loop adaptive optics in the human eye," Opt. Lett. 26, 746-748 (2001). https://doi.org/10.1364/OL.26.000746
  5. J. H. Lee, H. S. Gho, J. I. Lee, Y. C. Lee, U. C. Kang, J. W. Kim, Y. L. Cho, J. Kim, K. M. Lee, B. T. Choi, and H. J, Cheon, "A 37ch visible adaptive optics system for wavefront compenstation," Journal of Korean Physical Society 49, 139-144 (2006).
  6. K. Ahn, H. G. Rhee, H. S. Yang, and H. Kihm, "Silicon carbide deformable mirror with 37 actuators for adaptive optics," Journal of Korean Physical Society 67, 1882-1888 (2015). https://doi.org/10.3938/jkps.67.1882
  7. C. Higgs, H. T. Barclay, D. V. Murphy, and C. A. Primmerman, "Atmoshperic compensation and tracking using active illumination," Lincoln Laboratory Journal 11, 5-26 (1998).
  8. B. C. Platt, and R. Shack, "History and principles of Shack-Hartmann wavefront sensing," Journal of Refractive Surgery 17, 573-577 (2001).
  9. R. Rampy, D. Gavel, D. Dillon, and S. Thomas, "Production of phase screens for simulation of atmospheric turbulence," Appl. Opt. 51, 8769-8778 (2012). https://doi.org/10.1364/AO.51.008769
  10. E. Dalimeir, and C. Dainty, "Comparative analysis of deformable mirrors for ocular adaptive optics," Opt. Express 13, 4275-4285 (2005). https://doi.org/10.1364/OPEX.13.004275
  11. W. H. Southwell, "Wave-front estimation from wave-front slope measurements," J. Opt. Soc. Am. 70, 998-1006 (1980). https://doi.org/10.1364/JOSA.70.000998
  12. J. Hermann, "Least-squares wave-front errors of minimum norm," J. Opt. Soc. Am. 70, 28-35 (1980). https://doi.org/10.1364/JOSA.70.000028
  13. R. R. Shannon, and J. C. Wyant, "Applied optics and optical engineering," (Aademic Press, NY, USA, 1992).
  14. N. Devaney, E. Dalimier, T. Farrell, D. Coburn, R. Mackey, D. Mackey, F. Laurent, E. Daly, and C. Dainty, "Correction of ocular and atmospheric wavefronts: a comparison of the performance of various deformable mirrors," Appl. Opt. 47, 6550-6562 (2008). https://doi.org/10.1364/AO.47.006550

Cited by

  1. CVD SiC deformable mirror with monolithic cooling channels vol.26, pp.8, 2018, https://doi.org/10.1364/OE.26.009724