DOI QR코드

DOI QR Code

Appearance of osteoporosis in rat experimental autoimmune encephalomyelitis

  • Ahn, Meejung (School of Medicine, College of Veterinary Medicine, Jeju National University) ;
  • Kang, Sohi (Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University) ;
  • Park, Channam (Department of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University) ;
  • Kim, Jeongtae (Department of Molecular Anatomy, School of Medicine, University of the Ryukyus) ;
  • Jung, Kyungsook (Korea Research Institute of Bioscience and Biotechnology, Korea Research Institute of Bioscience and Biotechnology) ;
  • Yang, Miyoung (Department of Anatomy, School of Medicine, Wonkwang University) ;
  • Kim, Sung-Ho (Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University) ;
  • Moon, Changjong (Department of Veterinary Anatomy, College of Veterinary Medicine, Chonnam National University) ;
  • Shin, Taekyun (Department of Veterinary Anatomy, College of Veterinary Medicine, Jeju National University)
  • Received : 2016.03.24
  • Accepted : 2016.05.26
  • Published : 2016.06.30

Abstract

Experimental autoimmune encephalomyelitis (EAE) in Lewis rats is characterized by transient paralysis followed by recovery. To evaluate whether transient paralysis in EAE affects bone density, tibiae of EAE rats were morphologically investigated using micro-computed tomography and histology. The parameters of bone health were significantly reduced at the peak stage of EAE rats relative to those of controls (p < 0.05). The reduction of bone density was found to remain unchanged, even in the recovery stage. Collectively, the present data suggest that osteoporosis occurs in paralytic rats with monophasic EAE, possibly through the disuse of hindlimbs and/or autoimmune inflammation.

Keywords

References

  1. Ahn M, Yang W, Kim H, Jin JK, Moon C, Shin T. Immunohistochemical study of arginase-1 in the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis. Brain Res 2012, 1453, 77-86. https://doi.org/10.1016/j.brainres.2012.03.023
  2. Basso N, Heersche JN. Effects of hind limb unloading and reloading on nitric oxide synthase expression and apoptosis of osteocytes and chondrocytes. Bone 2006, 39, 807-814. https://doi.org/10.1016/j.bone.2006.04.014
  3. Brouwers JEM, Lambers FM, van Rietbergen B, Ito K, Huiskes R. Comparison of bone loss induced by ovariectomy and neurectomy in rats analyzed by in vivo micro-CT. J Orthop Res 2009, 27, 1521-1527. https://doi.org/10.1002/jor.20913
  4. Coskun Benlidayi I, Basaran S, Evlice A, Erdem M, Demirkiran M. Prevalence and risk factors of low bone mineral density in patients with multiple sclerosis. Acta Clin Belg 2015, 70, 188-192. https://doi.org/10.1179/2295333715Y.0000000002
  5. Deodhar AA, Woolf AD. Bone mass measurement and bone metabolism in rheumatoid arthritis: a review. Br J Rheumatol 1996, 35, 309-322. https://doi.org/10.1093/rheumatology/35.4.309
  6. Eskan MA, Jotwani R, Abe T, Chmelar J, Lim JH, Liang S, Ciero PA, Krauss JL, Li F, Rauner M, Hofbauer LC, Choi EY, Chung KJ, Hashim A, Curtis MA, Chavakis T, Hajishengallis G. The leukocyte integrin antagonist Del-1 inhibits IL-17-mediated inflammatory bone loss. Nat Immunol 2012, 13, 465-473. https://doi.org/10.1038/ni.2260
  7. Feng J, Liu S, Ma S, Zhao J, Zhang W, Qi W, Cao P, Wang Z, Lei W. Protective effects of resveratrol on postmenopausal osteoporosis: regulation of SIRT1-NF-${\kappa}B$ signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2014, 46, 1024-1033. https://doi.org/10.1093/abbs/gmu103
  8. Filip RS, Zagorski J. Age- and BMD-related differences in biochemical markers of bone metabolism in rural and urban women from Lublin Region, Poland. Ann Agric Environ Med 2004, 11, 255-259.
  9. Hjortnaes J, Butcher J, Figueiredo JL, Riccio M, Kohler RH, Kozloff KM, Weissleder R, Aikawa E. Arterial and aortic valve calcification inversely correlates with osteoporotic bone remodelling: a role for inflammation. Eur Heart J 2010, 31, 1975-1984. https://doi.org/10.1093/eurheartj/ehq237
  10. Iwamoto J, Matsumoto H, Takeda T, Sato Y, Yeh JK. Effects of vitamin K2 on cortical and cancellous bone mass, cortical osteocyte and lacunar system, and porosity in sciatic neurectomized rats. Calcif Tissue Int 2010, 87, 254-262. https://doi.org/10.1007/s00223-010-9387-7
  11. Kim S, Moon C, Wie MB, Kim H, Tanuma N, Matsumoto Y, Shin T. Enhanced expression of constitutive and inducible forms of nitric oxide synthase in autoimmune encephalomyelitis. J Vet Sci 2000, 1, 11-17.
  12. Kodama Y, Nakayama K, Fuse H, Fukumoto S, Kawahara H, Takahashi H, Kurokawa T, Sekiguchi C, Nakamura T, Matsumoto T. Inhibition of bone resorption by pamidronate cannot restore normal gain in cortical bone mass and strength in tail-suspended rapidly growing rats. J Bone Miner Res 1997, 12, 1058-1067. https://doi.org/10.1359/jbmr.1997.12.7.1058
  13. Shin T, Kojima T, Tanuma N, Ishihara Y, Matsumoto Y. The subarachnoid space as a site for precursor T cell proliferation and effector T cell selection in experimental autoimmune encephalomyelitis. J Neuroimmunol 1995, 56, 171-178. https://doi.org/10.1016/0165-5728(94)00144-D
  14. Tanuma N, Shin T, Kogure K, Matsumoto Y.Differential role of $TNF-{\alpha}$ and $IFN-{\gamma}$ in the brain of rats with chronic relapsing autoimmune encephalomyelitis. J Neuroimmunol 1999, 96, 73-79. https://doi.org/10.1016/S0165-5728(99)00018-1
  15. Will R, Palmer R, Bhalla AK, Ring F, Calin A. Osteoporosis in early ankylosing spondylitis: a primary pathological event? Lancet 1989, 2, 1483-1485.