DOI QR코드

DOI QR Code

Adsorption of Mercury(II) Chloride and Carbon Dioxide on Graphene/Calcium Oxide (0 0 1)

  • Received : 2016.01.05
  • Accepted : 2016.04.18
  • Published : 2016.06.27

Abstract

In this work, recent progress on graphene/metal oxide composites as advanced materials for $HgCl_2$ and $CO_2$ capture was investigated. Density Functional Theory calculations were used to understand the effects of temperature on the adsorption ability of $HgCl_2$ and water vapor on $CO_2$ adsorption on CaO (001) with reinforced carbon-based nanostructures using B3LYP functional. Understanding the mechanism by which mercury and $CO_2$ adsorb on graphene/CaO (g-CaO) is crucial to the design and fabrication of effective capture technologies. The results obtained from the optimized geometries and frequencies of the proposed cluster site structures predicted that with respect to molecular binding the system possesses unusually large $HgCl_2$ ($0.1-0.4HgCl_2g/g$ sorbent) and $CO_2$ ($0.2-0.6CO_2g/g$ sorbent) uptake capacities. The $HgCl_2$ and $CO_2$ were found to be stable on the surface as a result of the topology and a strong interaction with the g-CaO system; these results strongly suggest the potential of CaO-doped carbon materials for $HgCl_2$ and $CO_2$ capture applications, the functional gives reliable answers compared to available experimental data.

Keywords

References

  1. H. J. Freund and V. Staemmler, Rep. of Prog. in Phys., 59, 283 (1996). https://doi.org/10.1088/0034-4885/59/3/001
  2. G. Pacchioni, Surface Rev. Lett., 7, 277 (2000).
  3. C. Noguera, Surface Rev. Lett., 8, 121 (2001).
  4. P. Broqvist and I. Panas, Surface Sci., 554, 262 (2004). https://doi.org/10.1016/j.susc.2004.02.014
  5. S. P. Decker, A. Khaleel and K. Klabunde, J. Environ. Sci. Technol., 36, 762 (2002). https://doi.org/10.1021/es010733z
  6. A. Gross, Surface Sci., 500, 347 (2002). https://doi.org/10.1016/S0039-6028(01)01526-6
  7. R. A. Van santen, J. Chem. Rev., 95, 637 (1995). https://doi.org/10.1021/cr00035a008
  8. R. A. Van santen, Catalyts Rev. Sci. Eng., 37, 557 (1995). https://doi.org/10.1080/01614949508006451
  9. B. K. Rao, J. Chem. Phys., 116, 1343 (2002). https://doi.org/10.1063/1.1429245
  10. G. L. Gutsev and P. Jena, J. Phys. Chem. A, 104, 5374 (2002).
  11. G. Pacchioni and F. Illas, J. Am. Chem. Soc., 116, 10152 (1994). https://doi.org/10.1021/ja00101a038
  12. F. Bawa, Phys. Chem. Chem. Phys., 3, 3042 (2001). https://doi.org/10.1039/b103738m
  13. E. J. Karlsen and L. G. M. Pettersson, J. Phys. Chem. B, 107, 7795 (2003). https://doi.org/10.1021/jp0346716
  14. C. Di Valentin and G. Pacchioni, Surface Sci., 556, 145 (2004). https://doi.org/10.1016/j.susc.2004.03.009
  15. M. B. Jensen, O. Swang and U. Olsbye, J. Phys. Chem. B, 109, 16774 (2005). https://doi.org/10.1021/jp052037h
  16. J. Rogal, Fachbereich Physik, Freie Universitat Berlin (2006).
  17. W. Kolodziejczyk, S. Roszak and Leszczynski, J. Chem. Phys. Lett., 450, 138 (2007). https://doi.org/10.1016/j.cplett.2007.11.006
  18. I. V. Lightcap, T. H. Kosel and P. V. Kamat, Nano. Lett., 10, 577 (2010). https://doi.org/10.1021/nl9035109
  19. A. D. Becke, Phys. Rev. A, 38, 3098 (1988). https://doi.org/10.1103/PhysRevA.38.3098
  20. R. S. Mulliken, J. Chem. Phys., 23, 1833 (1955). https://doi.org/10.1063/1.1740588
  21. F. D'Souza, M. E. Zandler, P. M. Smith, G. R. Deviprasad, K. Arkady, M. Fujitsuka and O. Ito, J. Phys. Chem. A, 106, 649 (2002). https://doi.org/10.1021/jp0136415
  22. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis and J. A. Montgomery Jr. J. Comp. Chem., 14, 1347 (1993). https://doi.org/10.1002/jcc.540141112
  23. J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 105, 2999 (2005). https://doi.org/10.1021/cr9904009
  24. L. Onsager and J. Amer. Chem. Soc., 58, 1486 (1936). https://doi.org/10.1021/ja01299a050
  25. E. Cances and B. Mennucci, J. Mathem. Chem., 23, 309 (1998). https://doi.org/10.1023/A:1019133611148
  26. E. Cances, B. Mennucci and J. J. Tomasi, Chem. Phys., 107, 3032 (1997).
  27. D. Loffreda, Surface Sci., 600, 2103 (2006). https://doi.org/10.1016/j.susc.2006.02.045
  28. N. M. O'Boyle, A. L. Tenderholt and K. M. J. Langner, Comp. Chem., 29, 839 (2008). https://doi.org/10.1002/jcc.20823
  29. B. M. Bode and M. S. Gordon, J. Mol. Graphics Mod., 16, 133 (1998). https://doi.org/10.1016/S1093-3263(99)00002-9
  30. C. Claudio and A. S. Stephen, Dalton trans., 42, 4670 (2013). https://doi.org/10.1039/c3dt32713b
  31. S. P. Decker, A. Khaleel and K. J. Klabunde, Environ. Sci. Technol., 36, 762 (2002). https://doi.org/10.1021/es010733z
  32. M. Mananghaya, J. Chem. Sci., 127, 751 (2015). https://doi.org/10.1007/s12039-015-0831-0
  33. M. Mananghaya, Bull. Korean Chem. Soc., 35, 253 (2014). https://doi.org/10.5012/bkcs.2014.35.1.253
  34. M. Mananghaya, J. Korean Chem. Soc., 56, 34 (2012). https://doi.org/10.5012/jkcs.2012.56.1.034
  35. M. Mananghaya, Int. J. Hydrog. Energy, 40, 9352 (2015). https://doi.org/10.1016/j.ijhydene.2015.05.087
  36. M. Mananghaya, J. Korean Chem. Soc., 59, 429 (2015). https://doi.org/10.5012/jkcs.2015.59.5.429
  37. M. Mananghaya, M. J. Chem. Sci., 126, 1737 (2014). https://doi.org/10.1007/s12039-014-0744-3
  38. M. Mananghaya, E. Rodulfo and G. N. Santos, J. Nanotechnol., 2012, 780815 (2012).
  39. M. Mananghaya, E. Rodulfo and G. N. Santos, J. Nanomater., 2012, 104891 (2012).
  40. M. Mananghaya, J. Mol. Liq., 212, 592 (2015). https://doi.org/10.1016/j.molliq.2015.10.013
  41. S. F. Rastegar, A. A. Peyghan and N. L. Hadipour, App. Surf. Sci., 265, 412 (2013). https://doi.org/10.1016/j.apsusc.2012.11.021
  42. M. Pashangpour and A. A. Peyghan, J. Mol. Modeling, 21, 1 (2015). https://doi.org/10.1007/s00894-014-2561-5
  43. A. A. Peyghan, M. Noei, M. B. Tabar. J. mol. model., 19, 3007 (2013). https://doi.org/10.1007/s00894-013-1832-x
  44. M. Mananghaya, M. Promentilla, K. Aviso and R. Tan, J. Mol. Liq., 215, 780 (2016). https://doi.org/10.1016/j.molliq.2016.01.041
  45. M. Mananghaya, D. Yu, G. N. Santos and E. Rodulfo, Int. J. Hydrogen Energy http://dx.doi.org/10.1016/j.ijhydene.2016.05.225 (2016).
  46. M. Mananghaya, D. Yu, G. N. Santos and E. Rodulfo, Sci. Rep. 6, 27370; doi:10.1038/srep27370 (2016).
  47. M. Mananghaya, A. Beltran and L. P. Belo, Mater. Chem. Phys. http://dx.doi.org/10.1016/j.matchemphys.2016.06.018 0254-0584 (2016).

Cited by

  1. Nitrogen substitution and vacancy mediated scandium metal adsorption on carbon nanotubes vol.23, pp.6, 2017, https://doi.org/10.1007/s10450-017-9901-6
  2. Hydrogen adsorption of Ti-decorated boron nitride nanotube: a density functional based tight binding molecular dynamics study vol.24, pp.7, 2018, https://doi.org/10.1007/s10450-018-9971-0
  3. Solubility of aminotriethylene glycol functionalized single wall carbon nanotubes: A density functional based tight binding molecular dynamics study vol.40, pp.8, 2019, https://doi.org/10.1002/jcc.25776