DOI QR코드

DOI QR Code

Enviroment-Friendly Synthesis of Nanocrystalline Zinc Oxide Particles Using Fruit Peel Extract

폐과일껍질을 이용한 친환경 ZnO 나노분말 합성

  • Yuvakkumar, R. (Department of Nanomaterials Engineering, Chungnam National University) ;
  • Song, Jae Sook (Department of Nanomaterials Engineering, Chungnam National University) ;
  • Shin, Pyung Woo (Department of Metallurgy & Advanced Materials Engineering, Changwon National University) ;
  • Hong, Sun Ig (Department of Nanomaterials Engineering, Chungnam National University)
  • ;
  • 송재숙 (충남대학교 신소재공학과) ;
  • 신평우 (창원대학교 금속신소재공학과) ;
  • 홍순익 (충남대학교 신소재공학과)
  • Received : 2015.10.23
  • Accepted : 2016.04.25
  • Published : 2016.06.27

Abstract

In this study, an environment-friendly synthetic strategy to process zinc oxide nanocrystals is reported. The biosynthesis method used in this study is simple and cost-effective, with reduced solvent waste via the use of fruit peel extract as a natural ligation agent. The formation of ZnO nanocrystals using a rambutan peel extract was observed in this study. Rambutan peels has the ability to ligate zinc ions as a natural ligation agent, resulting in ZnO nanochain formation due to the presence of an extended polyphenolic system over the whole incubation period. Via transmission electron microscopy, successful formation of zinc oxide nanochains was confirmed. TEM observation revealed that the bioinspired ZnO nanocrystals were spherical and/or hexagonal particles with sizes between 50 and 100 nm.

Keywords

References

  1. S. Iravani, Green Chem., 13, 2638 (2011). https://doi.org/10.1039/c1gc15386b
  2. J. M. Patete, X. Peng, C. Koenigsmann, Y. Xu, B. Karnb and S. S. Wong, Green Chem., 13, 482 (2011). https://doi.org/10.1039/c0gc00516a
  3. S. Wenda, S. Illner, A. Mell and U. Kragl, Green Chem., 13, 3007 (2011). https://doi.org/10.1039/c1gc15579b
  4. Y. Konishi, K. Ohno, N. Saitoh, T. Nomura, S. Nagamine, H. Hishida, Y. Takahashi and T. Uruga, J. Biotechnol., 128, 648 (2007). https://doi.org/10.1016/j.jbiotec.2006.11.014
  5. S. K. Das, C. Dickinson, F. Lafir, D. F. Brougham and E. Marsili, Green Chem., 14, 1322 (2012). https://doi.org/10.1039/c2gc16676c
  6. S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad and M. Sastry, Biotechnol. Prog., 22, 577 (2006). https://doi.org/10.1021/bp0501423
  7. D. Philip, Phys. E, 42, 1417 (2010). https://doi.org/10.1016/j.physe.2009.11.081
  8. S. Y. Chu, T. M. Yan and S. L. Chen, J. Mater. Sci. Lett., 19, 349 (2000). https://doi.org/10.1023/A:1006739419719
  9. M. S. Tokumoto, V. Briois and C. V. Santilli, J. Sol-Gel Sci. Technol., 26, 547 (2003). https://doi.org/10.1023/A:1020711702332
  10. J. H. Kim, W. C. Choi, H. Y. Kim, Y. Kang and Y.-K. Park, Powder Technol., 153, 166 (2005). https://doi.org/10.1016/j.powtec.2005.03.004
  11. L. C. Damonte, L. A. Mendoza Zelis, B. Mari Soucase and M. A. Hernandez Fenollosa, Powder Technol., 148, 15 (2004). https://doi.org/10.1016/j.powtec.2004.09.014
  12. M. L. Kahn and M. Monge, Adv. Funct. Mater., 3, 458 (2005).
  13. S. Kamarnen, M. Bruno and E. Mariani, Mater. Res. Bull., 35, 1843 (2000). https://doi.org/10.1016/S0025-5408(00)00385-8
  14. X. Zhao, B. Zheng, C. Li and H. Gu, Powder Technol., 100, 20 (1998). https://doi.org/10.1016/S0032-5910(98)00047-3
  15. T. Tani, L. Madler and S. E. Pratsinis, J. Nanoparticle Res., 4, 337 (2002). https://doi.org/10.1023/A:1021153419671
  16. Z. R. Dai, Z.W. Pan and Z L. Wang, Adv. Funct. Mater., 13, 9 (2003). https://doi.org/10.1002/adfm.200390013
  17. W. Q. Ao, J. Q. Li, H. M. Yang, X. R. Zeng and X. C. Ma, Powder Technol., 168, 148 (2006). https://doi.org/10.1016/j.powtec.2006.07.014
  18. D. Yu, R. Cai and Z. Liu, Spectrochim. Acta A, 60, 1617 (2004). https://doi.org/10.1016/j.saa.2003.09.003
  19. M. L. Curri, R. Comparelli, P. D. Cozzli, G. Mascolo and A. Agostiano, Mater. Sci. Eng. C, 23, 285 (2003). https://doi.org/10.1016/S0928-4931(02)00250-3
  20. V. P. Kamat, R. Huehn and R. Nicolaescu, J. Phys. Chem. B, 106, 788 (2002). https://doi.org/10.1021/jp013602t
  21. H. M. Lin, S. J. Tzeng, P. J. Hsiau and W. L. Tsai, Nanostruct. Mater., 10, 465 (1998). https://doi.org/10.1016/S0965-9773(98)00087-7
  22. J. Xu, Q. Y. Pan, Y. A. Shun and Z. Z. Tian, Sens. Actuators B Chem., 66, 277 (2000). https://doi.org/10.1016/S0925-4005(00)00381-6
  23. Z. Hu, G. Oskam and P. C. Searson, J. Colloid Interface Sci., 263, 454 (2003). https://doi.org/10.1016/S0021-9797(03)00205-4
  24. S. J. Chen and L. H. Lia, J. Cryst. Growth, 252, 184 (2003). https://doi.org/10.1016/S0022-0248(02)02495-8
  25. A. K. Li and W. T. Wu, Key Eng. Mater., 247, 405 (2003). https://doi.org/10.4028/www.scientific.net/KEM.247.405
  26. J. Y. Song and B. S. Kim, Bioprocess Biosyst. Eng., 32, 79 (2009). https://doi.org/10.1007/s00449-008-0224-6
  27. S. Gorinstein, M. Zemser, R. Haruenkit, R. Chuthakorn, F. Grauer, O. Martin Belloso and S. Trakhtenberg, J. Nutr. Biochem., 10, 367 (1999). https://doi.org/10.1016/S0955-2863(99)00017-0
  28. L. P. Leong and G. Shui, Food Chem., 76, 69 (2002). https://doi.org/10.1016/S0308-8146(01)00251-5
  29. U. Palanisamy, H. M. Cheng, T. Masilamani, T. Subramaniam, L. T. Ling and A. K. Radhakrishnan, Food Chem., 109, 54 (2008). https://doi.org/10.1016/j.foodchem.2007.12.018
  30. N. Thitilertdecha, A. Teerawutgulrag and N. Rakariyatham, LWT - Food Sci. Technol., 41, 2029 (2008). https://doi.org/10.1016/j.lwt.2008.01.017
  31. T. C. Daman and S. P. S., Proto, B. Tell, Phys. Rev., 142, 570 (1966). https://doi.org/10.1103/PhysRev.142.570
  32. R. Y. Hong, J. H. Li, L. L. Chen, D. Q. Liu, H. Z. Li, Y. Zheng and J. Ding, Powder Technol., 189, 426 (2009). https://doi.org/10.1016/j.powtec.2008.07.004
  33. X. B. Wang, K. F. Huo, F. Zhang, Z. Hu, P. K. Chu, H. S. Tao, Q. Wu, Y. M. Hu and J. M. Zhu, J. Phys. Chem. C, 113, 170 (2009).
  34. C. Jayaseelan, A. Abdul Rahuman, A. Vishnu Kirthi, S. Marimuthu, T. Santhoshkumar, A. Bagavan, K. Gaurav, L. Karthik and K.V. Bhaskara Rao, Spectrochim. Acta A, 90, 78 (2012). https://doi.org/10.1016/j.saa.2012.01.006
  35. S. N. Barnaby, S. M. Yu, K. R. Fath, A. Tsiola, O. Khalpari and I. A. Banerjee, Nanotechnology, 22, 225605 (2011). https://doi.org/10.1088/0957-4484/22/22/225605
  36. E. Koren, R. Kohen and I. A. Ginsburg, J. Agric. Food Chem., 57, 7644 (2009). https://doi.org/10.1021/jf9006449
  37. J. A. Jacob, H. S. Mahal, N. Biswas, T. Mukherjee and S. Kapoor, Langmuir. 24, 528 (2008). https://doi.org/10.1021/la702073r
  38. M. McDonald, I. Mila and A. Scalbert, J. Agric. Food Chem., 44, 599 (1996). https://doi.org/10.1021/jf950459q
  39. S. K. Sivaraman, I. Elango, S. Kumar and V. Santhanam, Curr. Sci., 97, 1055 (2009).
  40. O. Yamamoto, J. Sawai and T. Sasamoto, Int. J. Inorg. Mater. 2, 451 (2000). https://doi.org/10.1016/S1466-6049(00)00045-3
  41. S. R. Przewloka and B. J. Shearer, Holzforschuang 56, 13 (2002).