DOI QR코드

DOI QR Code

Steady- and Transient-State Analyses of Fully Ceramic Microencapsulated Fuel with Randomly Dispersed Tristructural Isotropic Particles via Two-Temperature Homogenized Model-I: Theory and Method

  • Lee, Yoonhee (Korea Institute of Nuclear Safety) ;
  • Cho, Bumhee (Standard Energy) ;
  • Cho, Nam Zin (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2015.12.28
  • Accepted : 2016.02.09
  • Published : 2016.06.25

Abstract

As a type of accident-tolerant fuel, fully ceramic microencapsulated (FCM) fuel was proposed after the Fukushima accident in Japan. The FCM fuel consists of tristructural isotropic particles randomly dispersed in a silicon carbide (SiC) matrix. For a fuel element with such high heterogeneity, we have proposed a two-temperature homogenized model using the particle transport Monte Carlo method for the heat conduction problem. This model distinguishes between fuel-kernel and SiC matrix temperatures. Moreover, the obtained temperature profiles are more realistic than those of other models. In Part I of the paper, homogenized parameters for the FCM fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure are obtained by (1) matching steady-state analytic solutions of the model with the results of particle transport Monte Carlo method for heat conduction problems, and (2) preserving total enthalpies in fuel kernels and SiC matrix. The homogenized parameters have two desirable properties: (1) they are insensitive to boundary conditions such as coolant bulk temperatures and thickness of cladding, and (2) they are independent of operating power density. By performing the Monte Carlo calculations with the temperature-dependent thermal properties of the constituent materials of the FCM fuel, temperature-dependent homogenized parameters are obtained.

Keywords

References

  1. S.J. Zinkle, K.A. Terrani, J.C. Gehin, L.J. Ott, L.L. Snead, Accident tolerant fuels for LWRs: a perspective, J. Nucl. Mater. 448 (2013) 374-379.
  2. K.A. Terrani, L.L. Snead, J.C. Gehin, Microencapsulated fuel technology for commercial light water and advanced reactor application, J. Nucl. Mater. 427 (2012) 209-224. https://doi.org/10.1016/j.jnucmat.2012.05.021
  3. K.A. Terrani, L.L. Snead, J.C. Gehin, Fully ceramic microencapsulated fuels for LWRs, Trans. Am. Nucl. Soc. 106 (2012) 1106-1107.
  4. A.C. Kadak, R.G. Ballinger, M.J. Driscoll, S. Yip, D.G. Wilson, H.C. No, J. Wang, H. MacLean, T. Galen, C. Wang, J. Lebenhaft, T. Zhai, D.A. Petti, W.K. Terry, H.D. Gougar, A.M. Ougouag, C.H. Oh, R.L. Moore, G.K. Miller, J.T. Maki, G.R. Smolik, D.J. Varacalle, Modular Pebble Bed Reactor Project: University Research Consortium Annual Report, INEEL/EXT-2000-01034, Idaho National Engineering & Environmental Laboratory, Idaho, 2000.
  5. R. Stainsby, M. Worsley, A. Grief, F. Dawson, M. Davies, P. Coddington, J. Baker, A. Dennier, Development of local heat transfer models for safety assessment of high temperature gas-cooled reactor coresd Part I: pebble bed reactors, J. Eng. Gas Turbines Power 132 (2010) 01296.
  6. J. Hashin, S. Shtrikman, A variational approach to the theory of the effective magnetic permeability of multiphase materials,, J. Appl. Phys. 33 (1962) 127-140.
  7. V. Marelle, F. Huet, P. Lemoine, Thermo-mechanical modeling of U-Mo fuels with MAIA, 8th International Topical Meeting on Research Reactor Fuel Management, Munich (Germany), March 21-24, 2004.
  8. R.C. Progelhof, J.L. Throne, Method for predicting the thermal conductivity of composite systems: a review, Ploym. Eng. Sci. 16 (1976) 615-625. https://doi.org/10.1002/pen.760160905
  9. J. Chang, Homogenization of thermal conductivity in a periodic structure, Korean Nuclear Society Spring Meeting, Jeju (Korea), May 5-7, 2015.
  10. N.Z. Cho, Particle transport Monte Carlo method for heat conduction problems, in: V.S. Vikhrenko (Ed.), Heat Conductiond Basic Research, chapter 13, InTech, Rijeka (Croatia), 2011.
  11. B.H. Cho, N.Z. Cho, Monte Carlo method extended to heat transfer problems with non-constant temperature and convection boundary conditions, Nucl. Eng. Technol. 40 (2010) 65-72.
  12. J. Shentu, S. Yun, N.Z. Cho, A Monte Carlo method for solving heat conduction problems with complicated geometry, Nucl. Eng. Technol. 39 (2007) 207-214. https://doi.org/10.5516/NET.2007.39.3.207
  13. J.H. Song, N.Z. Cho, Temperature distributions in a pebble with dispersed fuel particles calculated by Monte Carlo method, Trans. Am. Nucl. Soc. 98 (2008) 443-445.
  14. J.H. Song, N.Z. Cho, An improved Monte Carlo method applied to the heat conduction analysis of a pebble with dispersed fuel particles, Nucl. Eng. Technol. 41 (2009) 279-286. https://doi.org/10.5516/NET.2009.41.3.279
  15. Y. Lee, N.Z. Cho, HEATONda Monte Carlo code for thermal analysis of fuel element with randomly dispersed TRISO particles, NURAPT-15-01 [Internet]. Korea Advanced Institute of Science andTechnology, 2015. Available from: http://nurapt.kaist.ac./kr/NurapT-Archives/NurapT-15-01.pdf.
  16. N.Z. Cho, H. Yu, J.W. Kim, Two-temperature homogenized model for steady-state and transient thermal analyses of a pebble with distributed fuel particles, Ann. Nucl. Energy 36 (2009) 448-457 see also Corrigendum, Ann. Nucl. Energy 37 (2010) 1793. https://doi.org/10.1016/j.anucene.2008.11.031
  17. Y. Lee, N.Z. Cho, Three-dimensional single-channel thermal analysis of fully ceramic microencapsulated fuel via twotemperature homogenized model, Ann. Nucl. Energy 71 (2014) 254-271. https://doi.org/10.1016/j.anucene.2014.03.039
  18. Y. Lee, N.Z. Cho, Steady- and transient-state analyses of fully ceramic microencapsulated fuel loaded reactor core via twotemperature homogenized thermal-conductivity model, Ann. Nucl. Energy 76 (2015) 283-296. https://doi.org/10.1016/j.anucene.2014.09.027
  19. H. Yu, N.Z. Cho, Comparison of Monte Carlo simulation models for randomly distributed particle fuels in VHTR fuel element, Trans. Am. Nucl. Soc. 95 (2006) 719-721.
  20. Y. Lee, N.Z. Cho, Nuclearethermal analysis of fully ceramic microencapsulated fuel with randomly dispersed TRISO particles via two-temperature homogenized model, Presented in Reactor Physics Asia 2015 (RPHA15) Conference, Jeju (Korea), September 16-18, 2015.
  21. K.A. Terrani, J.O. Kiggans, C.M. Silva, C. Shih, Y. Katoh, L.L. Snead, Progress on matrix SiC processing and properties for fully ceramic microencapsulated fuel form, J. Nucl. Mater. 457 (2015) 9-17. https://doi.org/10.1016/j.jnucmat.2014.10.034
  22. B. Cho, N.Z. Cho, Theory Manual for the Rectangular Three-Dimensional Diffusion Nodal Code COREDAX-2, Version 1.0, NURAPT-2014-01, Korea Advanced Institute of Science and Technology, 2014.
  23. Y. Lee, B. Cho, N.Z. Cho, Steady- and transient-state analyses of fully ceramic microencapsulated fuel with randomly dispersed TRISO particles via two-temperature homogenized modeldII: applications by coupling with COREDAX, Nucl. Eng. Technol. 48 (2016) 660-672. https://doi.org/10.1016/j.net.2016.02.006
  24. S.B. Ross, M.S. El-Genk, Thermal conductivity correlation for uranium nitride fuel between 10 and 1923 K, J. Nucl. Mater. 151 (1988) 313-317. https://doi.org/10.1016/0022-3115(88)90025-6
  25. International Atomic Energy Agency (IAEA), Thermophysical properties database of materials for light water reactor and heavy water reactors, IAEA-TECDOC-1496, Vienna (Austria), 2006.
  26. L.L. Snead, T. Nozawa, Y. Katoh, T.S. Byun, S. Kondo, D.A. Petti, Handbook of SiC properties for fuel performance modeling, J. Nucl. Mater. 371 (2007) 329-377. https://doi.org/10.1016/j.jnucmat.2007.05.016
  27. N.R. Brown, H. Ludewig, A. Aronson, G. Raitses, M. Todosow, Neutronic evaluation of a PWR with fully ceramic microencapsulated fuel. Part I: lattice benchmarking, cycle length, and reactivity coefficient, Ann. Nucl. Energy 62 (2013) 538-547. https://doi.org/10.1016/j.anucene.2013.05.025
  28. N.R. Brown, H. Ludewig, A. Aronson, G. Raitses, M. Todosow, Neutronic evaluation of a PWR with fully ceramic microencapsulated fuel. Part II: nodal core calculations and preliminary study of thermal hydraulic feedback, Ann. Nucl. Energy 62 (2013) 548-557. https://doi.org/10.1016/j.anucene.2013.05.027
  29. B.P. Collin, Modeling and analysis of UN TRISO fuel for LWR application using the PARFUME code, J. Nucl. Mater. 451 (2014) 65-77. https://doi.org/10.1016/j.jnucmat.2014.03.032
  30. D. Petti, P. Martin, M. Pelip, R. Ballinger, Development of Improved Models and Designs For Coated-Particle Gas Reactor Fuels: Final Report under the International Nuclear Energy Research Initiative (I-NERI), INEEL/EXT-05-02615, Idaho National Engineering & Environmental Laboratory, Idaho, 2004.
  31. L.L. Snead, K.A. Terrani, Y. Katoh, C. Silva, K.J. Leonard, A.G. Perez-Bergquist, Stability of SiC-matrix microencapsulated fuel constituents at relevant LWR conditions, J. Nucl. Mater. 448 (2013) 389-398.
  32. B. Szpunar, J.A. Szpunar, Thermal conductivity of uranium nitride and carbide, Int. J. Nucl. Energy 2014 (2014) 178360.

Cited by

  1. Steady- and Transient-State Analyses of Fully Ceramic Microencapsulated Fuel with Randomly Dispersed Tristructural Isotropic Particles via Two-Temperature Homogenized Model-II: Applications by Couplin vol.48, pp.3, 2016, https://doi.org/10.1016/j.net.2016.02.006
  2. Development of effective thermal conductivity model for particle-type nuclear fuels randomly distributed in a matrix vol.508, pp.None, 2016, https://doi.org/10.1016/j.jnucmat.2018.05.044
  3. Microstructure and thermal conductivity of fully ceramic microencapsulated fuel fabricated by spark plasma sintering vol.101, pp.9, 2018, https://doi.org/10.1111/jace.15585
  4. Development of a two-regime heat conduction model for TRISO-based nuclear fuels vol.519, pp.None, 2016, https://doi.org/10.1016/j.jnucmat.2019.04.004
  5. Thermal conductivity estimation of fully ceramic microencapsulated pellets with ZrO2 as simulated particles vol.525, pp.None, 2019, https://doi.org/10.1016/j.jnucmat.2019.07.027
  6. The studies of electronic structure, mechanical properties and ideal fracture behavior of U3Si1.75Al0.25: first-principle investigations vol.15, pp.None, 2021, https://doi.org/10.1016/j.jmrt.2021.08.143