DOI QR코드

DOI QR Code

Separative Power of an Optimised Concurrent Gas Centrifuge

  • Received : 2015.07.25
  • Accepted : 2016.01.06
  • Published : 2016.06.25

Abstract

The problem of separation of isotopes in a concurrent gas centrifuge is solved analytically for an arbitrary binary mixture of isotopes. The separative power of the optimised concurrent gas centrifuges for the uranium isotopes equals to ${\delta}U=12.7(V/700m/s)^2(300K/T)(L/1m)kg{\cdot}SWU/yr$, where L and V are the length and linear velocity of the rotor of the gas centrifuge and T is the temperature. This equation agrees well with the empirically determined separative power of optimised counter-current gas centrifuges.

Keywords

References

  1. K. Cohen, in: G.M. Murphy (Ed.), The Theory of Isotope Separation as Applied to the Large-scale Production of $U^{235}$, McGraw-Hill, New York, 1951.
  2. H.G. Wood, J.B. Morton, Onsager's pancake approximation for the fluid dynamics of a gas centrifuge, J. Fluid Mech. 101 (1980) 1. https://doi.org/10.1017/S0022112080001504
  3. F. Doneddu, P. Roblin, H.G. Wood, Optimization studies for gas centrifuges, Sep. Sci. Technol. 35 (2000) 1207-1221. https://doi.org/10.1081/SS-100100220
  4. A.P. Senchenkov, S.A. Senchenkov, V.D. Borisevich, Gas centrifuges, in: V.Yu. Baranov (Ed.), ISOTOPES: Properties, Production and Application, Vol. 1, Fizmatlit, Moscow, 2005, pp. 168-208 [in Russian].
  5. V.D. Borisevich, O.N. Godisov, D.V. Yatsenko, Comparison of the circulation efficiency in gas centrifuges with different geometric and speed characteristics for uranium enrichment, Atom. Energy 116 (2015) 363-371.
  6. V.D. Borisevich, V.D. Borman, G.A. Sulaberidze, V.I. Tokmantcev, A.V. Tikhomirov, Fizicheskie Osnovy Razdeleniya Isotopov V Gazovoi Centrifuge (Physical Basics of the Isotope Separation in Gas Centrifuge), Izdatel'skii dom MEI, Moscow, 2011 [In Russian].
  7. R.S. Kemp, Gas centrifuge theory and development: a review of U.S. programs, Sci. Glob. Security 17 (2009) 1-19. https://doi.org/10.1080/08929880802335816
  8. T. Mashimo, X. Huang, T. Osakabe, M. Ono, M. Nishihara, H. Ihara, Advanced high-temperature ultracentrifuge apparatus for mega-gravity material science, Rev. Sci. Instrum 74 (2003) 160. https://doi.org/10.1063/1.1527718
  9. K. Fuchs, R. Peierls, Separation of isotopes, Selected Scientific Papers of Sir Rudolf Peierls: (With Commentary), in: R.H. Dalitz, Sir Rudolf Peierls (Eds.), World scientific, 1997, pp. 303-320 (DTA rept. MS 12A, 1941).
  10. O. Lamm, Die Differentialgleichung der Ultrazentrifugierung, Ark. Mat. Astron. Fys. 21B (1929) 1.
  11. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, 1964.
  12. V.D. Borisevich, V.D. Borman, S.V. Bogovalov, V.A. Kislov, V.N. Tronin, I.V. Tronin, V.I. Abramov, S.V. Yupatov, On a formula to evaluate the separative power of long gas centrifuges, Sep. Sci. Technol. 49 (2014) 329-334. https://doi.org/10.1080/01496395.2013.851697
  13. S.V. Bogovalov, I.V. Tronin, Numerical modelling of the flow and isotope separation in centrifuge Iguasu for different lengths of the rotor, Proc. ICNAAM-2015, AIP Proceedings, 2016 (in press).

Cited by

  1. Dependence of the separative power of an optimised Iguassu gas centrifuge on the velocity of rotor vol.27, pp.7, 2017, https://doi.org/10.1108/hff-03-2016-0133
  2. Waves in strong centrifugal field: dissipative gas vol.33, pp.1, 2016, https://doi.org/10.1007/s00162-018-0481-1
  3. Optimized Separative Power of Hyperspeed Iguassu Gas Centrifuge: Dependence on the Rotor Diameter and Velocity vol.194, pp.12, 2016, https://doi.org/10.1080/00295639.2020.1774229