DOI QR코드

DOI QR Code

The Studies of Irradiation Hardening of Stainless Steel Reactor Internals under Proton and Xenon Irradiation

  • Received : 2015.09.22
  • Accepted : 2016.01.09
  • Published : 2016.06.25

Abstract

Specimens of stainless steel reactor internals were irradiated with 240 keV protons and 6 MeV Xe ions at room temperature. Nanoindentation constant stiffness measurement tests were carried out to study the hardness variations. An irradiation hardening effect was observed in proton- and Xe-irradiated specimens and more irradiation damage causes a larger hardness increment. The Nix-Gao model was used to extract the bulk-equivalent hardness of irradiation-damaged region and critical indentation depth. A different hardening level under H and Xe irradiation was obtained and the discrepancies of displacement damage rate and ion species may be the probable reasons. It was observed that the hardness of Xe-irradiated specimens saturate at about 2 displacement/atom (dpa), whereas in the case of proton irradiation, the saturation hardness may be more than 7 dpa. This discrepancy may be due to the different damage distributions.

Keywords

References

  1. G.S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys, Springer, New York, 2007.
  2. Y. Takayama, R. Kasada, Y. Sakamoto, K. Yabuuchi, A. Kimura, M. Ando, D. Hamaguchi, Nanoindentation hardness and its extrapolation to bulk-equivalent hardness of F82H steels after single- and dual-ion beam irradiation, J. Nucl. Mater. 442 (2013) S23-S27. https://doi.org/10.1016/j.jnucmat.2012.12.033
  3. S.K. Kang, J.Y. Kim, C.P. Park, H.U. Kim, D. Kwon, Conventional Vickers and true instrumented indentation hardness determined by instrumented indentation tests, J. Mater. Res. 25 (2010) 337-343. https://doi.org/10.1557/JMR.2010.0045
  4. J.P. Biersack, L.G. Haggmark, A Monte Carlo computer program for the transport of energetic ions in amorphous targets, Nucl. Instrum. Methods 174 (1980) 257-269. https://doi.org/10.1016/0029-554X(80)90440-1
  5. ASTM, Standard Practice for Neutron Radiation Damage Simulation by Charged-particle Irradiation (ASTM 521-96), West Conshohocken, PA, 2003.
  6. R.D. Carter, D.L. Damcott, M. Atzmon, G.S. Was, E.A. Kenik, Effects of proton irradiation on the microstructure and microchemistry of type 304L stainless steel, J. Nucl. Mater. 205 (1993) 361-373. https://doi.org/10.1016/0022-3115(93)90101-4
  7. G. Gupta, Z. Jiao, A.N. Ham, J.T. Busby, G.S. Was, Microstructural evolution of proton irradiated T91, J. Nucl. Mater. 351 (2006) 162-173. https://doi.org/10.1016/j.jnucmat.2006.02.028
  8. W.D. Nix, H. Gao, Indentation size effects in crystalline materials: a law for strain gradient plasticity, J. Mech. Phys. Solids 46 (1998) 411-425. https://doi.org/10.1016/S0022-5096(97)00086-0
  9. R. Kasada, Y. Takayama, K. Yabuuchi, A. Kimura, A new approach to evaluate irradiation hadening of ion-irradiated ferritic alloys by nano-indentation techniques, Fusion Eng. Des. 86 (2011) 2658-2661. https://doi.org/10.1016/j.fusengdes.2011.03.073
  10. H.F. Huang, D.H. Li, J.J. Li, R.D. Liu, G.H. Lei, Nanostructure variations and their effects on mechanical strength of Ni-17Mo-7Cr alloy under xenon ion irradiation, Mater. Transact. 55 (2014) 1243-1247. https://doi.org/10.2320/matertrans.M2014075
  11. K. Yabuuchi, Y. Kuribayashi, S. Nogami, R. Kasada, A. Hasegawa, Evaluation of irradiation hardening of proton irradiated stainless steels by nanoindentation, J. Nucl. Mater. 446 (2014) 142-147. https://doi.org/10.1016/j.jnucmat.2013.12.009
  12. L.E. Samuels, T.O. Mulhearn, An experimental investigation of the deformed zone associated with indentation hardness impressions, J. Mech. Phys. Solids 5 (1957) 125-134. https://doi.org/10.1016/0022-5096(57)90056-X
  13. X. Liu, R. Wang, A. Ren, J. Jiang, C. Xu, P. Huang, W. Qian, Y. Wu, C. Zhang, Evaluation of radiation hardening in ionirradiated Fe based alloys by nanoindentation, J. Nucl. Mater. 444 (2014) 1-6. https://doi.org/10.1016/j.jnucmat.2013.09.026
  14. C.D. Hardie, C.A. Williams, S. Xu, S.G. Roberts, Effects of irradiation temperature and dose rate on the mechanical properties of self-ion implanted Fe and Fe-Cr alloys, J. Nucl. Mater. 439 (2013) 33-40. https://doi.org/10.1016/j.jnucmat.2013.03.052
  15. E.H. Lee, J.D. Hunn, T.S. Byun, L.K. Mansur, Effects of helium on radiation-induced defect microstructure in austenitic stainless steel, J. Nucl. Mater. 280 (2000) 18-24. https://doi.org/10.1016/S0022-3115(00)00038-6
  16. I.I. Chernov, A.N. Kalashnikov, B.A. Kalin, S. Yu, Binyukova, Gas bubbles evolution peculiarities in ferriticemartensitic and austenitic steels and alloys under helium-ion irradiation, J. Nucl. Mater. 323 (2003) 341-345. https://doi.org/10.1016/j.jnucmat.2003.08.010
  17. H. Zhang, C. Zhang, Y. Yang, Y. Meng, J. Jang, A. Kimura, Irradiation hardening of ODS ferritic steels under helium implantation and heavy-ion irradiation, J. Nucl. Mater. 455 (2014) 349-353. https://doi.org/10.1016/j.jnucmat.2014.06.062
  18. M. Chai, W. Lai, Z. Li, W. Feng, Radiation damage of 1Cr18Ni9Ti and Zr-Ti-Al alloys due to energetic particle irradiation, Acta Metall. Sin. (Engl. Lett.) 25 (2012) 29-39.
  19. D. Yun, M.A. Kirk, P.M. Baldo, J. Rest, A.M. Yacout, Z.Z. Insepov, In situ TEM investigation of Xe ion irradiation induced defects and bubbles in pure molybdenum single crystal, J. Nucl. Mater. 437 (2013) 240-249. https://doi.org/10.1016/j.jnucmat.2013.01.305
  20. G.R. Odette, G.E. Lucas, The effects of intermediate temperature irradiation on the mechanical behavior of 300-series austenitic stainless steels, J. Nucl. Mater. 179-181 (1991) 572-576. https://doi.org/10.1016/0022-3115(91)90152-W
  21. J.D. Hunn, E.H. Lee, T.S. Byun, L.K. Mansur, Helium and hydrogen induced hardening in 316LN stainless steel, J. Nucl. Mater. 282 (2000) 131-136. https://doi.org/10.1016/S0022-3115(00)00424-4

Cited by

  1. Hardness of AISI type 410 martensitic steels after high temperature irradiation via nanoindentation vol.23, pp.6, 2016, https://doi.org/10.1007/s12540-017-7141-7
  2. Radiation damage in helium ion-irradiated reduced activation ferritic/martensitic steel vol.50, pp.1, 2016, https://doi.org/10.1016/j.net.2017.10.012
  3. A Study of the Effect of Ion Irradiation on the Mechanical Properties of Eurofer 97 Steel vol.13, pp.1, 2016, https://doi.org/10.1134/s1027451019010075
  4. Irradiation studies on a reactor pressure vessel steel using Fe+ ion vol.6, pp.10, 2019, https://doi.org/10.1088/2053-1591/ab3f8b
  5. Hardening and Creep of Ion Irradiated CLAM Steel by Nanoindentation vol.10, pp.1, 2020, https://doi.org/10.3390/cryst10010044
  6. The Studies of Irradiation Hardening and RIS on IASCC of Reactor Internals Bolts vol.871, pp.None, 2016, https://doi.org/10.4028/www.scientific.net/kem.871.92
  7. Irradiation behaviors of two novel single-phase bcc-structure high-entropy alloys for accident-tolerant fuel cladding vol.84, pp.None, 2016, https://doi.org/10.1016/j.jmst.2020.12.058