DOI QR코드

DOI QR Code

Uranium Enrichment Determination Using a New Analysis Code for the U XKα Region: HyperGam-U

  • Kim, Junhyuck (Department of Nuclear Engineering, Seoul National University) ;
  • Choi, Hee-Dong (Department of Nuclear Engineering, Seoul National University) ;
  • Park, Jongho (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
  • Received : 2015.12.14
  • Accepted : 2016.01.28
  • Published : 2016.06.25

Abstract

HyperGam-U was recently developed to determine uranium enrichment based on ${\gamma}$- and X-ray spectroscopy analysis. The $XK_{\alpha}$ region of the uranium spectrum contains 13 peaks for $^{235}U$ and $^{238}U$ and is used mainly for analysis. To describe the X-ray peaks, a Lorentzian broadened shape function was used, and methods were developed to reduce the number of fitting parameters for decomposing the strongly overlapping peaks using channel-energy, energy-width, and energy-efficiency calibration functions. For validation, eight certified reference material uranium samples covering uranium enrichments from 1% to 99% were measured using a high-resolution planar high-purity germanium detector and analyzed using the HyperGam-U code. When corrections for the attenuation and true coincidence summing were performed for the detection geometry in this experiment, the goodness of fit was improved by a few percent. The enrichment bias in this study did not exceed 2% compared with the certified values for all measured samples.

Keywords

References

  1. R. Gunnink, MGAU: a New Analysis Code for Measuring U-235 Enrichments in Arbitrary Samples, Lawrence Livermore National Laboratory, 1994. UCRL-LR-114713.
  2. T.E. Sampson, T.A. Kelley, PC/FRAM: a Code for the Nondestructive Measurement of the Isotopic Composition of Actinides for Safeguards Applications, Los Alamos National Laboratory, 1996. LA-UR-963543.
  3. J. Morel, M. Etcheverry, G. Riazuelo, Uranium enrichment measurement by X- and gamma-ray spectrometry with the "URADOS" process, Appl. Radiat. Isot. 49 (1998) 1251-1257. https://doi.org/10.1016/S0969-8043(97)10054-9
  4. C.S. Park, H.D. Choi, G.M. Sun, J.H. Whang, Status of developing HPGe ${\gamma}$-ray spectrum analysis code HYPERGAM, Prog. Nucl. Energy 50 (2008) 389-393. https://doi.org/10.1016/j.pnucene.2007.11.022
  5. B.G. Park, H.D. Choi, C.S. Park, New development of HyperGam and its test of performance for ${\gamma}$-ray spectrum analysis, Nucl. Eng. Technol. 44 (2012) 781-790. https://doi.org/10.5516/NET.08.2011.062
  6. J. Humlicek, Optimized computation of the Voigt and complex probability functions, J. Quant. Spectrosc. Radiat. Transf. 27 (1982) 437-444. https://doi.org/10.1016/0022-4073(82)90078-4
  7. G.W. Phillips, K.W. Marlow, Automatic analysis of gammaray spectra from germanium detectors, Nucl. Instrum. Meth. 137 (1976) 525-536. https://doi.org/10.1016/0029-554X(76)90472-9
  8. M. Hollstein, Response characteristics of a high-resolution Si(Li) photon spectrometer, Nucl. Instrum. Meth. 82 (1970) 249-252. https://doi.org/10.1016/0029-554X(70)90356-3
  9. A. Wiens, B. Birkenbach, B. Bruyneel, J. Eberth, H. Hess, G. Pascovici, P. Reiter, D. Bazzacco, E. Farnea, C. Michelagnoli, F. Recchia, Improved energy resolution of highly segmented HPGe detectors by noise reduction, Eur. Phys. J. A 49 (2013) 47-56. https://doi.org/10.1140/epja/i2013-13047-2
  10. ORTEC, Multi-group Analysis MGA++ Software User's Manual, ORTEC Part No. 779950, 2002.
  11. M.A. Kellet, A.L. Nichols, Library of Recommended Actinide Decay Data, 2011, International Atomic Energy Agency, 2013. Pub-1613.
  12. H. Ruellan, M.C. Lepy, M. Etcheverry, J. Plagnard, J. Morel, A new spectra processing code applied to the analysis of $^{235}U$ and $^{238}U$ in the 60 to 200 keV energy range, Nucl. Instrum. Meth. A 369 (1996) 651-656. https://doi.org/10.1016/S0168-9002(96)80070-2
  13. E. Browne, Nuclear data sheets for A = 235, 239, Nucl. Data Sheets 98 (2003) 665-800. https://doi.org/10.1006/ndsh.2003.0005
  14. F.E. Chukreev, Nuclear data sheets for A = 238, Nucl. Data Sheets 97 (2002) 129-240. https://doi.org/10.1006/ndsh.2002.0017
  15. D.F. Jackson, D.J. Hawkes, X-ray attenuation coefficients of elements and mixtures, Phys. Rep. 70 (1981) 169-233. https://doi.org/10.1016/0370-1573(81)90014-4
  16. T.M. Semkow, G. Mehmood, P.P. Parekh, M. Virgil, Coincidence summing in gamma-ray spectroscopy, Nucl. Instrum. Meth. A 290 (1990) 437-444. https://doi.org/10.1016/0168-9002(90)90561-J
  17. T. Kibedi, T.W. Burrows, M.B. Trzhaskovskaya, P.M. Davidson, C.W. Nestor Jr., Evaluation of theoretical conversion coefficients using BrICC, Nucl. Instrum. Meth. A 589 (2008) 202-229. https://doi.org/10.1016/j.nima.2008.02.051

Cited by

  1. Basic characterization of uranium by high-resolution gamma spectroscopy vol.50, pp.6, 2016, https://doi.org/10.1016/j.net.2018.04.008
  2. Study on the performance of some non-destructive methods to estimate the uranium enrichment in nuclear materials vol.13, pp.None, 2016, https://doi.org/10.1016/j.rinp.2019.102345