DOI QR코드

DOI QR Code

Optimization of γ-Aminobutyric Acid Production Using Lactobacillus brevis spp. in Darae Sap

Lactobacillus brevis 균주를 이용한 다래 수액에서의 감마아미노뷰티르산 (γ-Aminobutyric Acid) 생산 최적화

  • Jeong, Myeong-Kyo (Department of Food Science & Biotechnology, Chungbuk National University) ;
  • Jeong, Ji-Hee (Department of Food Science & Biotechnology, Chungbuk National University) ;
  • Kim, Kwang-Yup (Department of Food Science & Biotechnology, Chungbuk National University)
  • 정명교 (충북대학교 식품생명공학과) ;
  • 정지희 (충북대학교 식품생명공학과) ;
  • 김광엽 (충북대학교 식품생명공학과)
  • Received : 2016.02.15
  • Accepted : 2016.04.18
  • Published : 2016.06.30

Abstract

This study was performed to increase the production of ${\gamma}$-aminobutyric acid (GABA) by lactic acid bacteria (Lactobacillus brevis CFM11) and manufacture an optimum medium using the sap from Darae (Actinidia arguta). The concentration of GABA in the fermented sap was determined using GABase enzymatic assay. The isolated L. brevis CFM11 produced $605.67{\mu}g/mL$ GABA after incubation for 24 hours at $37^{\circ}C$ in broth. The sap was fermented by L. brevis CFM11 under optimum conditions of $32^{\circ}C$ for 48 hours with 40% rice bran extract, 1.0% sucrose, 3.0% soytone, 0.2% magnesium sulfate, and 0.2% MSG. The fermented sap produced a concentration of $1366.13{\mu}g/mL$ GABA. These results demonstrate that fermenting Darae sap using L. brevis CFM11 can produce a fermented sap beverage with increased GABA content.

본 연구는 기능성 물질인 GABA를 생성하는 젖산세균을 분리하고 다래 수액을 이용하여 GABA 생산을 위한 배지의 최적화를 목표로 하였다. 다래 수액 발효에 이용할 고효율의 GABA 생성 균주 분리를 위해 젖산세균이 많다고 알려진 시료들에서 균주들을 채취하여 MRS broth에 접종 후 $37^{\circ}C$에서 24시간동안 배양 후, 효소적 방법을 이용해 균주가 생산하는 GABA양($605.67{\mu}g/mL$)을 측정하여 분리 선별하였다. 그리고 선별한 균주를 생리, 생화학적인 시험과 API 50 CHL을 이용한 당 발효 시험, 그리고 16s rDNA 분석을 통한 결과, L. brevis CFM11로 명명하였다. 선발된 젖산세균주의 생육특성을 알아보기 위해 다양한 온도(25, 32, 37, $45^{\circ}C$)와 시간(0, 24, 48, 72 h)에 따른 특성을 측정한 결과 $32^{\circ}C$, 48시간 배양했을 때 가장 높은 GABA 생성량과 생육조건을 가지는 것을 확인하였다. L. brevis CFM11를 이용한 발효 시 다래 수액에 부족할 수 있는 발효 영양원을 보충하고 기능성을 높이기 위해 미강추출물을 첨가하여 발효에 이용하였고, 또한 높은 농도의 GABA 생성을 위해 다양한 영양원과 젖산세균의 GABA 생성을 증가시킨다고 알려진 MSG를 첨가하여 최적 발효 조건을 찾은 결과, 미강추출물 40%, sucrose 1.0%, soytone 3.0%, magnesium sulfate 0.2%, MSG 0.2% 첨가하는 것이 다래 수액 발효를 위한 최적 조건이라는 것을 확인할 수 있었다. 최적화된 다래 수액에 L. brevis CFM11를 이용하여 발효를 한 결과, 균주의 최적 생육 조건인 $32^{\circ}C$ 48시간 배양 시 가장 높은 GABA 생성량인 $1366.13{\mu}g/mL$을 보였다. 결론적으로 본 연구를 통해 분리 균주인 L. brevis CFM11를 이용하여 발효 시 다래 수액 내에서 높은 효율의 GABA를 생성 가능하다고 판단되며, 이로 인해 GABA의 기능성이 더해진 젖산세균 발효음료의 상업적 생산에 도움을 줄 수 있을 것으로 판단된다.

Keywords

References

  1. Shin JW, Kim DG, Lee YW, Lee HS, Shin KS, Choi CS, Kwon GS. Isolation and characterization of Lactobacillus brevis AML15 producing ${\gamma}$-aminobutyric acid. J. Life Sci. 17: 970-975 (2007) https://doi.org/10.5352/JLS.2007.17.7.970
  2. Lim SD, Yoo SH, Yang HD, Kim SK, Park SY. GABA productivity in yoghurt fermented by freeze dried culture preparations of Lactobacillus acidophilus RMK567. Korean J. Food Sci. An. 29: 437-444 (2009) https://doi.org/10.5851/kosfa.2009.29.4.437
  3. Oh SH, Oh CH. Brown rice extracts with enhanced levels of GABA stimulate immune cells. Food Sci. Biotechnol. 12: 248-252 (2003)
  4. Mann SY, Kim EA, Lee GY, Kim RU, Hwang DY, Son HJ, Kim DS. Isolation and identification of GABA-producing microorganism from Chungkookjang. J. Life Sci. 23: 102-109 (2013) https://doi.org/10.5352/JLS.2013.23.1.102
  5. Lee LS, Jung KH, Choi UK, Cho CW, Kim KI, Kim YC. Isolation and identification of lactic acid producing bacteria from kimchi and their fermentation properties of soymilk. J. Korean Soc. Food Sci. Nutr. 42: 1872-1877 (2013) https://doi.org/10.3746/jkfn.2013.42.11.1872
  6. Park JH, Moon HJ, Oh JH, Lee JH, Choi KM. Cha JD, Lee TB, Lee MJ, Jung HK. Antibacterial activity of lactic acid bacteria isolated from traditional fermented foods and development of a starter for fermented milk. Korean J. Food Preserv. 20: 712-719 (2013) https://doi.org/10.11002/kjfp.2013.20.5.712
  7. Lee KS, Shin YS, Lee CH. Acid tolerance of Lactobacillus brevis isolated from kimchi. Korean J. Food Sci. Technol. 30: 1399-1403 (1998)
  8. Kim RU, Ahn SC, Yu SN, Kim KY, Seong JH, Lee YG, Kim HS, Kim DS. Screening and identification of soy curd-producing lactic acid bacteria. J. Life Sci. 21: 235-241 (2011) https://doi.org/10.5352/JLS.2011.21.2.235
  9. Kim EA, Mann SY, Kim SI, Lee GY, Hwang DY, Son HJ, Lee CY, Kim DS. Isolation and identification of soycurd forming lactic acid bacteria which produce GABA from kimchi. Korean J. Food Preserv. 20: 705-711 (2013) https://doi.org/10.11002/kjfp.2013.20.5.705
  10. Yu JJ, Oh SH. ${\gamma}$-aminobutyric acid production and glutamate decarboxylase activity of Lactobacillus sakei OPK2-59 isolated from kimchi. Korean J. Microbiol. 47: 316-322 (2011)
  11. Choi SI, Lee JW, Park SM, Lee MY, Ji GE, Park MS, Heo TR. Improvement of ${\gamma}$-aminobutyric acid (GABA) production using cell entrapment of Lactobacillus brevis GABA 057. J. Microbiol. Biotechnol. 16: 562-568 (2006)
  12. Kim YH, Kang CS, Lee YS. Quantification of tocopherol and tocotrienol content in rice bran by near infrated reflectance spectroscopy. Korean J. Crop Sci. 43: 211-215 (2004)
  13. Chen MH, Bergman CJ. A rapid procedure for analysing rice bran tocopherol, tocotrienol and ${\gamma}$-oryzanol contents. J. Food Compos. Anal. 18: 319-331 (2005) https://doi.org/10.1016/j.jfca.2003.09.016
  14. Choi SP, Kang MY, Nam SH. Inhibitory activity of the extracts from the pigmented rice brans on inflammatory reactions. J Korean Soc. Appl. Bi. 47: 222-227 (2004)
  15. Ha TY, Han SY, Kim SR, Kim IH, Lee HY, Kim HK. Bioactive components in rice bran oil improve lipid profiles in rat fed a high-cholesterol diet. Nutr. Res. 25: 597-606 (2005) https://doi.org/10.1016/j.nutres.2005.05.003
  16. Choi HI, Ye EJ, Kim SJ, Bae MJ, Yee ST, Park EJ, Park EM. Anticancer (in vitro) and antiallergy effects of rice bran extracts. J Korean Soc. Food Sci. Nutr. 35: 1297-1303 (2006) https://doi.org/10.3746/jkfn.2006.35.10.1297
  17. Nam SH, Kang MY. In vitro inhibitory effect of colored rice bran extracts carcinogenicity. J. Korean Soc. Appl. Bi. 40: 307-312 (1997)
  18. Scalbert A, Johnson IT, Saltmarsh M. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nutr. 81: 215S-217S (2005) https://doi.org/10.1093/ajcn/81.1.215S
  19. Dassanayake LSK, Kodali DR, Ueno S, Sato K. Physical properties of rice bran wax in bulk and organogels. J. Am. oil Chem. Soc. 86: 1163-1173 (2009) https://doi.org/10.1007/s11746-009-1464-6
  20. Chung MJ, Lee SJ, Shin JH, Sung NJ, Jo JS, Sung NJ. The components of the sap from birches bamboos and darae. J. Korean Soc. Food Sci. Nutr. 24: 727-733 (1995)
  21. Park YS, Lim KC, Lee JH. Analysis of chemical components of xylem sap from 'Hayward' kiwifruit canes and processing of drink using the xylem sap. Korean J. Hortic. Sci. 18: 808-810 (2000)
  22. Kim JH, Lee WJ, Cho YW, Kim KY. Storage-life and palatability extension of Betula platyphylla sap using lactic acid bacteria fermentation. J. Korean Soc. Food Sci. Nutr. 38: 787-794 (2009) https://doi.org/10.3746/jkfn.2009.38.6.787
  23. Zhang G, Bown AW. The rapid determination of ${\gamma}$-aminobutyric acid. Phytochemistry 44: 1007-1009 (1997) https://doi.org/10.1016/S0031-9422(96)00626-7
  24. Lee MJ, Jeong YS, Chun GT. Enhanced production of monacolin-K through supplement of monacolin-K precursors into production medium and cloning of SAM synthetase gene (metK). Korean J. Biotechnol. Bioeng. 23: 519-524 (2008)
  25. Kim EA, Mann SY, Kim SI, Lee GY, Hwang DY, Son HJ, Lee CY, Kim DS. Isolation and identification of soycurd forming lactic acid bacteria which produce GABA from kimchi. Korean J. Food Preserv. 20: 705-711 (2013) https://doi.org/10.11002/kjfp.2013.20.5.705
  26. Lim SD, Kim KS, Do JR. Physiological Characteristics and GABA production of Lactobacillus acidophilus RMK567 Isolated from raw milk. Korean J. Food Sci. An. 29: 15-23 (2009) https://doi.org/10.5851/kosfa.2009.29.1.15
  27. Park KB, Oh SH. Production of yogurt with enhanced levels of gamma-aminobutyric acid and valuable nutrients using lactic acid bacteria and germinated soybean extract. Bioresource Technol. 98: 1675-1679 (2007) https://doi.org/10.1016/j.biortech.2006.06.006
  28. Li H, Gao D, Cao Y, Xu H. A high ${\gamma}$-aminobutyric acid-producing Lactobacillus brevis isolated from Chinese traditional paocai. Food Microbiol. 58: 649-653 (2008)
  29. Komatsuzaki N, Shima J, Kawamoto S, Momose H, Kimura T. Production of ${\gamma}$-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food microbiol. 22: 497-504 (2005) https://doi.org/10.1016/j.fm.2005.01.002
  30. Yang SY, Lu FX, Lu ZX, Bie XM, Jiao Y, Sun LJ, Yu B. Production of gamma-aminobutyric acid by Streptococcus salivarius subsp thermophilus Y2 under submerged fermentation. Amino Acids 34: 473-478 (2008) https://doi.org/10.1007/s00726-007-0544-x
  31. Kim JY, Lee MY, Ji GE, Lee YS, Hwang KT. Production of ${\gamma}$-aminobutyric acid in black raspberry juice during fermentation by Lactobacillus brevis GABA100. Int. J. Food Microbiol. 130: 12-16 (2009) https://doi.org/10.1016/j.ijfoodmicro.2008.12.028
  32. Li H, Qiu T, Gao D, Cao Y. Medium optimization for production of gamma-aminobutyric acid by Lactobacillus brevis NCL912. Amino acids 38: 1439-1445 (2010) https://doi.org/10.1007/s00726-009-0355-3
  33. Di Cagno R, Mazzacane F, Rizzello CG, de Angelis M, Giuliani G, Meloni M, de Servi B, Gobbetti M. Synthesis of ${\gamma}$-aminobutyric acid (GABA) by Lactobacillus plantarum DSM19463: Functional grape must beverage and dermatological applications. Appl. Microb. Cell Physiol. 86: 731-741 (2010)
  34. Villegas JM, Brown L, de Giori GS, Hebert EM. Optimization of batch culture conditions for GABA production by Lactobacillus brevis CRL 1942, isolated from quinoa sourdough. LWT-Food Sci. Technol. 67: 22-26 (2016) https://doi.org/10.1016/j.lwt.2015.11.027
  35. Sadaji Y, Jun-Ichi H, Kiyoshi H. Production of ${\gamma}$-aminobutyric acid from alcohol distillery lees by Lactobacillus brevis IFO-12005. J. Bio. Sci. Bioeng. 93: 95-97 (2002) https://doi.org/10.1016/S1389-1723(02)80061-5
  36. Li H, Cao Y. Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino acids 39: 1107-1116 (2010) https://doi.org/10.1007/s00726-010-0582-7
  37. Kook MC, Seo MJ, Cheigh CI, Pyun YR, Cho SC, Park H. Enhanced production of ${\gamma}$-aminobutyric acid using rice bran extracts by Lactobacillus sakei B2-16. J. Microbiol. Biotechnol. 20: 763-766 (2010)
  38. Kim JH, Nam SH, Kim MH, Sohn JK, Kang MY. Cooking properties of rice with pigmented rice bran extract. Korean J. Crop Sci. 52: 60-68 (2007)
  39. Jung EH, Hwang IK, Ha TY. Properties and antioxidative activities of phenolic acid concentrates of rice bran. Korean J. Food Sci. Technol. 42: 593-597 (2010)
  40. Lee JH, Oh SK, Kim DJ, Yoon MR, Chun AR, Choi IS, Lee JS, Kim YG. Comparison of antioxidant activities by different extraction temperatures of some commercially available cultivars of rice bran in Korea. Korean J. Food Nutr. 26: 1-7 (2013) https://doi.org/10.9799/ksfan.2013.26.1.001
  41. Lee BJ, Kim JS, Kang YM, Lim JH, Kim YM, Lee MS, Jeong MH, Ahn CB, Je JY. Antioxidant activity and ${\gamma}$-aminobutyric acid (GABA) content in sea tangle fermented by Lactobacillus brevis BJ20 isolated from traditional fermented foods. Food Chem. 122: 271-276 (2010) https://doi.org/10.1016/j.foodchem.2010.02.071
  42. Dhakal R, Bajpai VK, Baek KH. Production of GABA (${\gamma}$-aminobutyric acid) by microorganisms: A review. Brazilian J. Microbiol. 43: 1230-1241 (2012) https://doi.org/10.1590/S1517-83822012000400001