DOI QR코드

DOI QR Code

Yogurt Production Using Exo-polysaccharide-producing Leuconostoc and Weissella Isolates from Kimchi

김치유래 exo-polysaccharide 생성능 Leuconostoc 및 Weissella균을 이용한 발효유 제조

  • Min, Koung-Ah (Department of Culinary Science and Food Service Management, Sejong University) ;
  • Chung, Chang-Ho (Department of Culinary Science and Food Service Management, Sejong University)
  • 민경아 (세종대학교 조리외식경영학과) ;
  • 정장호 (세종대학교 조리외식경영학과)
  • Received : 2016.03.18
  • Accepted : 2016.05.13
  • Published : 2016.06.30

Abstract

The purpose of this study was to investigate the effect of exopolysaccharide (EPS)-producing Leuconostoc and Weissella isolates from kimchi as a probiotic starter and replacement for thickening agents such as pectin and gums in yogurt. Potential probiotic isolates were first screened for their acid and bile tolerance, and then evaluated for antimicrobial activity against Escherichia coli and Salmonella Typhimurium. When the selected Leuconostoc or Weissella isolates were co-inoculated in yogurt without a thickening agent, the yogurt with 4% sucrose produced lower syneresis values than the control and had higher EPS yields. The isolates were able to survive at a level of $10^6CFU/mL$ when incubated at $4^{\circ}C$ for 12 days. This study shows that EPS-producing Leuconostoc and Weissella strains have the potential to produce a synbiotic yogurt.

김치에서 분리된 Leuconosotc종과 Weissella종의 프로바이오틱스 특성시험과 요구르트에 접종하여 그 특성에 대해 알아보았다. 김치에서 분리한 균주들 대부분 85% 이상의 생존율을 보이며 산에 대한 높은 저항성을 보였다. 내담즙성 시험에서는 쓸개즙산을 0.3% 첨가한 MRS broth에 분리균주를 접종하여 측정한 결과 한 균주를 제외한 나머지 분리균주들의 생존율이 60% 이상으로 우수한 내성을 보였다. 내산성과 내담즙성 모두 우수한 Leuconostoc 6종, Weissella 3종을 E. coli와 S. Typimurium에 대한 생육억제 능력에 대한 시험을 진행하였다. 최종적으로 Leuconostoc 종인 KC. 5과 Weissella 종인 KC. 10을 최종 선발하였다. 선별된 김치분리균주 KC. 10의 덱스트란슈크레이스 활성 및 EPS 수율은 각각 15.91 DSU/mg protein 및 48.81%으로 일반 type 균주보다도 높았다. 선별 김치분리 균주를 이용하여 제조한 요구르트를 제조한 뒤 측정한 pH는 발효 6시간 때 pH 4.5에 도달하였으며 12일 저장기간 동안에 pH의 큰 변화는 없었다. 산도는 1.2-1.3%로 1.1-1.15% 사이인 대조군에 비해 산도가 높았다. $4^{\circ}C$ 저장기간 동안, 요구르트의 점도는 펙틴을 첨가한 대조군과 비교하였을 때 A12, KC. 5, KC. 10을 접종한 요구르트 중 슈크로스 함량이 4%인 첨가하고 선별된 김치 Leuconostoc 및 Wissella 접종 실험군이 12일째까지 유의적인 차이의 높은 점도를 나타내었다(p<0.05). 요구르트 저장 종료일에 시너레시스 측정값과 EPS수율 결과는 선별 김치균주를 이용한 4% 슈크로스첨가 요구르트는 대조군에 비해 시너레시스가 적은 값을 나타냈으며(p<0.05), EPS수율 또한 시료간 유의적인 차이를 나타내었다(p<0.05). 프로바이오틱 및 요구르트 특성시험을 종합해본 결과 선별 김치균주들을 요구르트 제조 시 혼합균주로 첨가할 경우 EPS 생성으로 인해 프로바이오틱 특성과 프리바이오틱 특성을 동시에 가져 신바이오틱 발효유의 생산이 가능하였다.

Keywords

References

  1. Shanahan F. Probiotics in inflammatory bowel disease-therapeutic rationale and role. Adv. Drug Deliver. Rev. 56: 809-818 (2004) https://doi.org/10.1016/j.addr.2003.11.003
  2. Sanders ME. Probiotics: Considerations for human health. Nutr. Rev. 61: 91-99 (2003) https://doi.org/10.1301/nr.2003.marr.91-99
  3. Mainville I, Areand Y, Farnworth ER. A dynamic model that simulates the human upper gastrointestinal tract for the study of probiotics. Int. J. Food Microbiol. 99: 287-296 (2005) https://doi.org/10.1016/j.ijfoodmicro.2004.08.020
  4. Pinto MGV, Franz CMAP, Schillinger U, Holzapfel WH. Lactobacillus spp. with in vitro probiotic properties from human faeces and traditional fermented products. Int. J. Food Microbiol. 109: 205-214 (2006) https://doi.org/10.1016/j.ijfoodmicro.2006.01.029
  5. Schillinger U, Guigas C, Holzapfel WH. In vitro adherence and other properties of Lactobacilli used in probiotic Yogurt-like products. Int. Dairy J. 15: 1289-1297 (2005) https://doi.org/10.1016/j.idairyj.2004.12.008
  6. Han HU, Lim CR, Park HK. Determination of microbial community as an indicator of kimchi fermentation. Korean J. Food Sci. Technol. 22: 26-32 (1990)
  7. Chyun JH, Rhee HS. Studiesonthe volatile fatty acids and carbon dioxide produced in different kimchis. Korean J. Food Sci. Technol. 8: 90-94 (1976)
  8. Dols M, Chraibi W, Remud-Simeon M, Lindley ND, Monsan PF. Growth and energetics of Leuconostoc mesenteroides NRRL B-1299 during metabolism of various sugars and their consequences for dextransucrase production. Appl. Environ. Microbiol. 63: 2159-2165 (1997)
  9. Miller AW, Robyt JF. Functional molecular size and structure of dextransucrase by radiation inactivation and gel electrophoresis. Biochim. Biophys. Acta. 870: 198-203 (1986) https://doi.org/10.1016/0167-4838(86)90222-0
  10. Tsuchiya HM, Koepsell HJ, Corman J, Bryant J, Bogard G, Feger VH, Jackson RW. The effect of certain cultural factors on production of dextransucrase by Leuconostoc mesenteroides. J. Bacteriol. 64: 524-524 (1952)
  11. Cerning J, Marshall VME. Exopolysaccharides produced by the dairy lactic acid bacteria. Recent Res. Dev. Microbiol. 3: 195-209 (1999)
  12. Ricciardi A, Clement F. Exopolysaccharides from lactic acid bacteria: Structure, production and technological applications. Ital. J. Food Sci. 12: 23-45 (2000)
  13. Sikkema J, Oba T. Extracellular polysaccharides of lactic acid bacteria. Snow Brand Rep. 107: 1-31 (1998)
  14. Jung SW. Fermentation characteristics of yogurt using lactic acid bacteria with high exopolysacchraide production ability isolated from sourdough. PhD thesis, Dongguk University, Seoul, Korea. pp. 1-76 (2007)
  15. Anonymous. Cultured milk products. p. 245. In: Dairy Processing Handbook. Bylund G (ed.). Tetra Pak Processing Systems AB, Lund, Sweden (1995)
  16. Cerning J. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol. Rev. 87: 113-130 (1990) https://doi.org/10.1111/j.1574-6968.1990.tb04883.x
  17. Zourari A, Acocolas JP, Desmazeaud MJ. Metabolism and biochemical characteristics of yoghurt bacteria: A reiew. Lait 73: 1-34 (1992)
  18. Schellhaass SM, Morris HA. Rheological and scanning electron microscopic examination of skim milk gels obtaines by fermenting with ropy and non-ropy strains of lactic acid bacteria. Food Struct. 4: 279-287 (1985)
  19. Park JH, Ahn HJ, Kim SG, Chung CH. Dextran-like exopolysaccharide- producing Leuconostoc and Weissella from kimchi and its ingredients. Food Sci. Biotechnol. 22: 1047-1053 (2013) https://doi.org/10.1007/s10068-013-0182-x
  20. KIM KJ, Chang HC. Isolation and characterization of exopolysaccharide producing lactic acid bacteria from Kimchi. Korean J Microbiol. Biotechnol. 34: 196-203 (2006)
  21. Lee SH, Yang EH, Kwon HS, Kang JH, Kang BH. Potential probiotic properties of Lactobacillus johnsonii IDCC 9203 isolated from infant feces. Korean J. Microbiol. Biotechnol. 36: 121-127 (2008)
  22. Schillinger U, Lucke FK. Antibacterial activity of Lactobacillus sake isolated from meat. Appl. Environ. Microbiol. 55: 1901-1906 (1989)
  23. Lee SH, Lee MJ. Viability in artificial gastric and bile juice and antimicrobial activity of some lactic acid bacteria isolated from Kimchi. Korean J Microbiol. Biotechnol. 25: 617-622 (1997)
  24. Chun JW, Ma CW, Oh KH. Physiological characterization of Lactobacillus sp. JK-8 isolated from shrimp aquaculture pond. Kor. J. Microbiol. 41: 18-23 (2005)
  25. Kim EA, Baick SC, Chung WH. A study on growth inhibition of Escherichia coli and Salmonella Typhimurium by lactic acid bacteria. J. Anim. Sci. Technol. 44: 491-498 (2002) https://doi.org/10.5187/JAST.2002.44.4.491
  26. Ha CG, Cho JK, Chai YG, Heo KC. Isolation and identification of lactic acid bacteria containing superior activity of the bile salts deconjugation. Korean J. Food Sci. An. 24: 164-170 (2004)
  27. Goyal A, Katiyar SS. Fractionation of Leuconostoc mesenteroides NRRL B-512F dextran sucrase by polyethylene glycol: A sample and effective method purification. J. Microbiol. Meth. 20: 225-231 (1994) https://doi.org/10.1016/0167-7012(94)90007-8
  28. Hwang SK. Isolation of bacteria producing dextran from fermented Kimchi and optimization of dextran production. MS thesis, Joongbu University, Geumsan, Korea (2007)
  29. Suh HM, Ahn JJ, Kwak HS. Effects of pectin and fruit juice concentrate on the viscosity of drink yogurt during storage. Korean J. Food Sci. An. 17: 207-211 (1997)
  30. Keogh MK, O'Kennedy BT. Rheology of stirred yogurt as affected by added milk fat, protein and hydrocolloids. J. Food Sci. 63: 108-112 (1998) https://doi.org/10.1111/j.1365-2621.1998.tb15687.x
  31. Kim EA, Yi DH. The probiotic characteristics of Lactobacillus acidophilus isolated from infant feces. J. Korean Soc. Appl. Bi. 51: 93-101 (2008)
  32. Lee KW, Park JY, Jeong HR, Heo HJ, Han NS, Kim JH. Probiotic properties of Weissella strains isolated from human faeces. Anaerobe 18: 96-102 (2012) https://doi.org/10.1016/j.anaerobe.2011.12.015
  33. Paik HD, Jung MY, Jung HY, Kim WS, Kim KT. Characterization of Bacillus polyfermenticus SCD for oral bacteriotherapy of gastrointestinal disorders. Korean J. Food Sci. Technol. 34: 73-78 (2002)
  34. Gilliland SE, Staley TE, Bush LT. Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct. J. Dairy Sci. 67: 3045-3051 (1984) https://doi.org/10.3168/jds.S0022-0302(84)81670-7
  35. Fuller Afrc R. Probiotics in man and animals. J. Appl. Microbiol. 66: 365-378 (1989)
  36. Chung WB, Soe WS, Cha JY, Cho YS. Isolation and characterization of Lactobacillus sp. FF-3 for probiotics production from Korean dongchimi. Korean J. Food Preserv. 10: 406-410 (2003)
  37. Kim SJ. Potential probiotic properties of Lactic acid bacteria isolated from kimchi. Food Sci. Biotechnol. 14: 547-550 (2005)
  38. Lee KH, Lee JH. Characterization of the bacteriocin produced by a Leuconostoc mesenteroides strain inhibiting the growth of Lactobacillus sakei. Korean J. Microbiol. Biotechnol. 39: 390-396 (2011)
  39. Lim SD, Kim KS, Cho SA, Do JR. Physiological characteristics and immunomodulating activity by Lactobacillus paracasei subsp. paracasei BF146 isolated from new-born infant feces.Korean J. Food Sci. An. 30: 223-231 (2010) https://doi.org/10.5851/kosfa.2010.30.2.223
  40. Lee AY, Park JY, Hahn YS. Study on the improvement of quality in Jeung-pyun prepared with Lactic bacteria having high dextransucrase activity as starters. Korean J. Food Sci. Technol. 38: 400-407 (2006)
  41. Sarwat F, Qader SAU, Aman A, Ahemd N. Production and charaterization of a unique dextran from an indigenous Leuconostoc mesenteroides CMG713. Int. J. Biol. Sci. 4: 379-386 (2008)
  42. Kim MS, Lee SO, Ryu HJ, Kang HK, Yoo SK, Chang SS, Kim DW, Kim DM, Kim SH. Synthesis of highly branched isomaltodextrin by acceptor reaction using dextransucrase from L.mesenteroides B-742CB and B-512FMCM. Korean Soc. Biotechnol. Bioeng. J. 16: 200-206 (2001)
  43. Chamber JV. Culture and processing techniques important to the manufacture of good quality yogurt. Cult. Dairy Prod. J. 14: 28-34 (1979)
  44. Lee JS, Han PJ, Suh KB. Studies on production modified yogurt (soy cream) from soybean milk. Korean J. Food Sci. Technol. 4: 194-199 (1972)
  45. Lee SH, Han JP, Kim SD. Effect of sucrose on the viscosity of yogurt manufactured by L. buigaricus FR1025. J. Basic Sci. Res. Inst. 1: 53-57 (1987)
  46. Rasic JL, Kurmann JA. Yoghurt. Technical Dairy Publishing House, Copenhagen, Denmark. p. 103 (1978)
  47. Lee SH, Koo YJ, Shin DH. Pysicochemical and bacteriological properties of yogurt made by single or mixed cultures of L. bugaricus and S. thermophilus. Korean J. Food Sci. Technol. 20: 140-147 (1988)
  48. Macura D, Townsley PM. Scandinavian ropy milk-identification and characterization of endogenous ropy Lactic streptococcus and their extracellular excretion. J. Dairy Sci. 67: 735-744 (1984) https://doi.org/10.3168/jds.S0022-0302(84)81363-6
  49. Pidoux M, Brillouet JM, Quemener B. Characterization of the polysaccharides from Lacobacillus brevis and from sugary kefir grains. Biotechnol. Lett. 10: 415-420 (1988) https://doi.org/10.1007/BF01087442
  50. Bouzar F, Cerning J, Desmazeaud M. Exopolysaccharide production and texture-promoting abilities of mixed-strain stater cultures in yoghurt production. J. Dairy Sci. 80: 2310-2317 (1997) https://doi.org/10.3168/jds.S0022-0302(97)76181-2
  51. Bang BH, Seo JS, Jeong EJ, Kim KP. Studies on the manufacture of peanut yoghurt. Korean J. Food Nutr. 17: 53-59 (2004)
  52. Ruas-Madiedo P, Tuinier R, Kanning M, Zoon P. Role of exopolysaccharides produced by Lactococcus lactis subsp. cremoris on the viscosity of fermented milks. Int. Dairy J. 12: 689-695 (2002) https://doi.org/10.1016/S0958-6946(01)00161-3
  53. Duboc P, Mollet B. Applications of exopolysaccharides in the dairy industry. Int. Dairy J. 11: 759-768 (2001) https://doi.org/10.1016/S0958-6946(01)00119-4
  54. Rhee, YH, Kang, MS. Physico-chemical characteristics and ${\beta}$-galactosidase activity of Lactobacillus plantanum from kimchi. Agr. Chem. Biotech. 39: 54-59 (1996)
  55. Seo DM, Kim SY, Eom HJ, Han NS. Synbiotic synthesis of oligosaccharides during milk fermentation by addition of Leuconostoc stater and sugar. J. Microbiol. Biotechnol. 17: 1758-1764 (2007)
  56. Aminigi ER, Metzger L, Lehtola PS. Biochemical composition and storage stability of a yogurt-like product from African yam bean (Sphenostylis stenocarpa). Int. J. Food Sci. Technol. 44: 560-566 (2009) https://doi.org/10.1111/j.1365-2621.2008.01846.x
  57. Kristi E, Biliaderis CG, Tzanetakis N. Modelling of rheological, microbiological and acidification properties of a fermented milk product containing a probiotic strain of Lactobacillus paracasei. Int. Dairy. J. 13: 517-528 (2003) https://doi.org/10.1016/S0958-6946(03)00074-8
  58. Donkor ON, Nilmini SLI, Stolic NP, Vasiljevic T, Shah NP. Survival and activity of selected probiotic organisms in set-type yoghurt during cold storage. Int. Dairy. J. 17: 657-665 (2007) https://doi.org/10.1016/j.idairyj.2006.08.006
  59. Akalin AS, Fenderya S, Akbulut N. Viability and activity of bifidobacteria in yoghurt containing fructooligosaccharide during refrigerated storage. Int. J. Food Sci. Technol. 39: 613-621 (2004) https://doi.org/10.1111/j.1365-2621.2004.00829.x
  60. MFDS. Food Standards Codex. Ministry of Food and Drug Safety. Cheongwon, Korea. p. 215 (2002)
  61. Hess SJ, Roberts RF, Ziegler GR. Rheological properties of non fat yoghurt stabilized using Lactobacillus delbrueckii ssp. bulgaricus producing exopolysaccharides or using commercial stabilizer system. J. Dairy Sci. 80: 252-263 (1997) https://doi.org/10.3168/jds.S0022-0302(97)75933-2
  62. Hehre EJ, Sugg JY. Serologically reactive polysaccharides produced through the action of bacterial enzyme: Dextran of Leuconostoc mesenteroides from sucrose. J. Exp. Med. 75: 339-353 (1942) https://doi.org/10.1084/jem.75.3.339