DOI QR코드

DOI QR Code

Inhibition of PI3K/AKT Signaling Pathway Enhances Cordycepin-Induced Apoptosis in Human Gastric Cancer Cells

인체위암 세포에서 PI3K/AKT 신호 전달계 차단에 의한 동충하초 유래 Cordycepin의 Apoptosis 유발 효과 증진

  • Received : 2016.02.15
  • Accepted : 2016.03.02
  • Published : 2016.06.30

Abstract

The phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway plays a crucial role in cancer occurrence by promoting cell proliferation and inhibiting apoptosis. In the present study, we evaluated the effect of a PI3K inhibitor, LY294002, on the chemosensitivity of gastric cancer cells to cordycepin, a predominant functional component of the fungus Cordyceps militaris, in AGS human gastric cancer cells and investigated possible underlying cellular mechanisms. Our results revealed that cordycepin inhibited viability of AGS cells in a concentration-dependent manner and induced apoptosis, as determined by apoptotic cell morphologies and fluorescence-activated cell sorting analysis associated with attenuated activation of the PI3K/Akt signaling pathway. Treatment with cordycepin in combination with a subtoxic concentration of LY294002 enhanced cordycepin-induced cytotoxicity and apoptotic potentials in AGS cells. Sensitization of LY294002 to cordycepin-induced apoptosis was accompanied by activation of caspases (caspases-3, -8, and -9) and was concomitant with poly(ADP-ribose) polymerase cleavage. Moreover, LY294002 up-regulated pro-apoptotic Bax and enhanced truncation of Bid in cordycepin-treated AGS cells, which was connected with increased loss of mitochondrial membrane potential and release of cytochrome c from mitochondria to the cytosol. Taken together, these results indicate that inhibition of the PI3K/Akt signaling pathway could augment cordycepin-induced apoptosis in human gastric cancer cells by up-regulating caspase activity through mitochondrial dysfunction.

PI3K/Akt 신호계는 세포 생존의 조절에 필수적인 경로로 대부분 암세포에서 활성이 증대되어 있다. 본 연구에서는 동충하초의 주요 생리활성 물질인 cordycepin에 의한 AGS 인체 위암 세포의 apoptosis 유도에 미치는 PI3K/Akt 신호계의 역할을 조사하였다. 본 연구의 결과에 의하면 cordycepin의 처리 농도의 증가에 따라 AGS 세포의 생존율은 억제되었으며, 이는 apoptosis 유도와 밀접한 관계가 있음을 핵의 형태적 변화와 flow cytometry 분석을 통하여 확인 하였다. 이러한 cordycepin의 apoptosis 유도 효과는 PI3K/Akt 신호계의 활성 저하와 연관성이 있었으며, 세포독성을 나타내지 않는 범위의 PI3K/Akt 신호계 저해제인 LY294002를 cordycepin과 동시 처리하였을 경우, cordycepin에 의한 apoptosis 유발을 더욱 증대시켰다. 그리고 cordycepin에 대한 LY294002의 apoptosis 유발 증대는 caspases (caspase-3, -8 및 -9)의 활성 증가와 poly(ADP-ribose) polymerase 단백질의 분해 증가를 촉진했다. 또한 cordycepin이 처리된 AGS 세포에서 LY294002는 apoptosis 유도에 관여하는 Bax의 발현을 증가시켰고 apoptosis 억제에 관여하는 Bcl-2의 발현은 감소시켰으며, 이는 미토콘드리아 기능 손상과 미토콘드리아에서 세포질로의 cytochrome c 유리를 증대시켰다. 따라서 PI3K/Akt 신호계의 활성 차단은 cordycepin의 항암 활성을 더욱 상승시켰으며, 이는 미토콘드리아 기능 손상과 caspase의 활성 증대를 통하여 이루어짐을 알 수 있었다.

Keywords

References

  1. Xiao JH, Zhong JJ. 2007. Secondary metabolites from Cordyceps species and their antitumor activity studies. Recent Pat Biotechnol 1: 123-137. https://doi.org/10.2174/187220807780809454
  2. Cunningham KG, Manson W, Spring FS, Hutchinson SA. 1950. Cordycepin, a metabolic product isolated from cultures of Cordyceps militaris (Linn.) Link. Nature 166: 949.
  3. Nair CN, Owens MJ. 1974. Preliminary observations pertaining to polyadenylation of rhinovirus RNA. J Virol 13: 535-537.
  4. Thomadaki H, Tsiapalis CM, Scorilas A. 2005. Polyadenylate polymerase modulations in human epithelioid cervix and breast cancer cell lines, treated with etoposide or cordycepin, follow cell cycle rather than apoptosis induction. Biol Chem 386: 471-480.
  5. Thomadaki H, Scorilas A, Tsiapalis CM, Havredaki M. 2008. The role of cordycepin in cancer treatment via induction or inhibition of apoptosis: implication of polyadenylation in a cell type specific manner. Cancer Chemother Pharmacol 61: 251-265.
  6. Chen LS, Stellrecht CM, Gandhi V. 2008. RNA-directed agent, cordycepin, induces cell death in multiple myeloma cells. Br J Haematol 140: 682-691. https://doi.org/10.1111/j.1365-2141.2007.06955.x
  7. Chen Y, Chen YC, Lin YT, Huang SH, Wang SM. 2010. Cordycepin induces apoptosis of CGTH W-2 thyroid carcinoma cells through the calcium-calpain-caspase 7-PARP pathway. J Agric Food Chem 58: 11645-11652. https://doi.org/10.1021/jf1028976
  8. Choi S, Lim MH, Kim KM, Jeon BH, Song WO, Kim TW. 2011. Cordycepin-induced apoptosis and autophagy in breast cancer cells are independent of the estrogen receptor. Toxicol Appl Pharmacol 257: 165-173. https://doi.org/10.1016/j.taap.2011.08.030
  9. Jeong JW, Jin CY, Park C, Hong SH, Kim GY, Jeong YK, Lee JD, Yoo YH, Choi YH. 2011. Induction of apoptosis by cordycepin via reactive oxygen species generation in human leukemia cells. Toxicol In Vitro 25: 817-824. https://doi.org/10.1016/j.tiv.2011.02.001
  10. Li Y, Li R, Zhu S, Zhou R, Wang L, DU J, Wang Y, Zhou B, Mai L. 2015. Cordycepin induces apoptosis and autophagy in human neuroblastoma SK-N-SH and BE(2)-M17 cells. Oncol Lett 9: 2541-2547. https://doi.org/10.3892/ol.2015.3066
  11. Lee HH, Kim SO, Kim GY, Moon SK, Kim WJ, Jeong YK, Yoo YH, Choi YH. 2014. Involvement of autophagy in cordycepin- induced apoptosis in human prostate carcinoma LNCaP cells. Environ Toxicol Pharmacol 38: 239-250. https://doi.org/10.1016/j.etap.2014.06.003
  12. Lee HH, Park C, Jeong JW, Kim MJ, Seo MJ, Kang BW, Park JU, Kim GY, Choi BT, Choi YH, Jeong YK. 2013. Apoptosis induction of human prostate carcinoma cells by cordycepin through reactive oxygen species-mediated mitochondrial death pathway. Int J Oncol 42: 1036-1044. https://doi.org/10.3892/ijo.2013.1762
  13. Lee SY, Debnath T, Kim SK, Lim BO. 203. Anti-cancer effect and apoptosis induction of cordycepin through DR3 pathway in the human colonic cancer cell HT-29. Food Chem Toxicol 60: 439-447. https://doi.org/10.1016/j.fct.2013.07.068
  14. Fiandalo MV, Kyprianou N. 2012. Caspase control: protagonists of cancer cell apoptosis. Exp Oncol 34: 165-175.
  15. Hensley P, Mishra M, Kyprianou N. 2013. Targeting caspases in cancer therapeutics. Biol Chem 394: 831-843.
  16. Lavrik IN. 2000. Systems biology of apoptosis signaling networks. Curr Opin Biotechnol 21: 551-555.
  17. Fulda S, Debatin KM. 2006. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25: 4798-4811. https://doi.org/10.1038/sj.onc.1209608
  18. Duriez PJ, Shah GM. 1997. Cleavage of poly(ADP-ribose) polymerase: a sensitive parameter to study cell death. Biochem Cell Biol 75: 337-349. https://doi.org/10.1139/o97-043
  19. Wang XA, Xiang SS, Li HF, Wu XS, Li ML, Shu YJ, Zhang F, Cao Y, Ye YY, Bao RF, Weng H, Wu WG, Mu JS, Hu YP, Jiang L, Tan ZJ, Lu W, Wang P, Liu YB. 2014. Cordycepin induces S phase arrest and apoptosis in human gallbladder cancer cells. Molecules 19: 11350-11365. https://doi.org/10.3390/molecules190811350
  20. Liao Y, Ling J, Zhang G, Liu F, Tao S, Han Z, Chen S, Chen Z, Le H. 2015. Cordycepin induces cell cycle arrest and apoptosis by inducing DNA damage and up-regulation of p53 in Leukemia cells. Cell Cycle 14: 761-771. https://doi.org/10.1080/15384101.2014.1000097
  21. Lee HH, Jeong JW, Lee JH, Kim GY, Cheong J, Jeong YK, Yoo YH, Choi YH. 2013. Cordycepin increases sensitivity of Hep3B human hepatocellular carcinoma cells to TRAIL-mediated apoptosis by inactivating the JNK signaling pathway. Oncol Rep 30: 1257-1264. https://doi.org/10.3892/or.2013.2589
  22. Chen YH, Hao LJ, Hung CP, Chen JW, Leu SF, Huang BM. 2014. Apoptotic effect of cisplatin and cordycepin on OC3 human oral cancer cells. Chin J Integr Med 20: 624-632. https://doi.org/10.1007/s11655-013-1453-3
  23. Tian X, Li Y, Shen Y, Li Q, Wang Q, Feng L. 2015. Apoptosis and inhibition of proliferation of cancer cells induced by cordycepin. Oncol Lett 10: 595-599. https://doi.org/10.3892/ol.2015.3273
  24. Baik JS, Kwon HY, Kim KS, Jeong YK, Cho YS, Lee YC. 2012. Cordycepin induces apoptosis in human neuroblastoma SK-N-BE(2)-C and melanoma SK-MEL-2 cells. Indian J Biochem Biophys 49: 86-91.
  25. Chan CH, Jo U, Kohrman A, Rezaeian AH, Chou PC, Logothetis C, Lin HK. 2014. Posttranslational regulation of Akt in human cancer. Cell Biosci 4: 59. https://doi.org/10.1186/2045-3701-4-59
  26. Markman B, Tao JJ, Scaltriti M. 2013. PI3K pathway inhibitors: better not left alone. Curr Pharm Des 19: 895-906. https://doi.org/10.2174/138161213804547213
  27. Singh SS, Yap WN, Arfuso F, Kar S, Wang C, Cai W, Dharmarajan AM, Sethi G, Kumar AP. 2015. Targeting the PI3K/Akt signaling pathway in gastric carcinoma: A reality for personalized medicine?. World J Gastroenterol 21: 12261-12273. https://doi.org/10.3748/wjg.v21.i43.12261
  28. Shi M, Zhang H, Li M, Xue J, Fu Y, Yan L, Zhao X. 2011. Normal endometrial stromal cells regulate survival and apoptosis signaling through PI3K/AKt/Survivin pathway in endometrial adenocarcinoma cells in vitro. Gynecol Oncol 123: 387-392. https://doi.org/10.1016/j.ygyno.2011.07.004
  29. Michl P, Downward J. 2005. Mechanisms of disease: PI3K/AKT signaling in gastrointestinal cancers. Z Gastroenterol 43: 1133-1139. https://doi.org/10.1055/s-2005-858638
  30. Almhanna K, Strosberg J, Malafa M. 2011. Targeting AKT protein kinase in gastric cancer. Anticancer Res 31: 4387-4392.
  31. Heavey S, O'Byrne KJ, Gately K. 2014. Strategies for cotargeting the PI3K/AKT/mTOR pathway in NSCLC. Cancer Treat Rev 40: 445-456. https://doi.org/10.1016/j.ctrv.2013.08.006
  32. Steelman LS, Stadelman KM, Chappell WH, Horn S, Bäsecke J, Cervello M, Nicoletti F, Libra M, Stivala F, Martelli AM, McCubrey JA. 2008. Akt as a therapeutic target in cancer. Expert Opin Ther Targets 12: 1139-1165. https://doi.org/10.1517/14728222.12.9.1139
  33. Ye Q, Cai W, Zheng Y, Evers BM, She QB. 2014. ERK and AKT signaling cooperate to translationally regulate survivin expression for metastatic progression of colorectal cancer. Oncogene 33: 1828-1839. https://doi.org/10.1038/onc.2013.122
  34. Tang C, Lu YH, Xie JH, Wang F, Zou JN, Yang JS, Xing YY, Xi T. 2009. Downregulation of survivin and activation of caspase-3 through the PI3K/Akt pathway in ursolic acidinduced HepG2 cell apoptosis. Anticancer Drugs 20: 249-258. https://doi.org/10.1097/CAD.0b013e328327d476
  35. Yoeli-Lerner M, Toker A. 2006. Akt/PKB signaling in cancer: a function in cell motility and invasion. Cell Cycle 5: 603-605. https://doi.org/10.4161/cc.5.6.2561
  36. Jeong JW, Jin CY, Park C, Han MH, Kim GY, Moon SK, Kim CG, Jeong YK, Kim WJ, Lee JD, Choi YH. 2012. Inhibition of migration and invasion of LNCaP human prostate carcinoma cells by cordycepin through inactivation of Akt. Int J Oncol 40: 1697-1704.
  37. Jang KJ, Kwon GS, Jeong JW, Kim CH, Yoon HM, Kim GY, Shim JH, Moon SK, Kim WJ, Choi YH. 2015. Cordyceptin induces apoptosis through repressing hTERT expression and inducing extranuclear export of hTERT. J Biosci Bioeng 119: 351-357. https://doi.org/10.1016/j.jbiosc.2014.08.008
  38. Pan BS, Wang YK, Lai MS, Mu YF, Huang BM. 2015. Cordycepin induced MA-10 mouse Leydig tumor cell apoptosis by regulating p38 MAPKs and PI3K/AKT signaling pathways. Sci Rep 5: 13372. https://doi.org/10.1038/srep13372
  39. Stennicke HR, Salvesen GS. 1999. Catalytic properties of the caspases. Cell Death Differ 6: 1054-1059. https://doi.org/10.1038/sj.cdd.4400599
  40. Lavrik IN, Golks A, Krammer PH. 2005. Caspases: pharmacological manipulation of cell death. J Clin Invest 115: 2665-2672. https://doi.org/10.1172/JCI26252

Cited by

  1. Extract from Artemisia annua Linn? Induces Apoptosis through the Mitochondrial Signaling Pathway in HepG2 Cells vol.45, pp.12, 2016, https://doi.org/10.3746/jkfn.2016.45.12.1708