DOI QR코드

DOI QR Code

Room air Temperature Prediction Model using Genetic Programming and BEMS Data

유전프로그래밍과 BEMS 데이터를 이용한 실내온도 기계학습 모델

  • 서원준 (성균관대학교 대학원) ;
  • 박철수 (성균관대학교 건설환경공학부)
  • Received : 2016.03.22
  • Accepted : 2016.06.08
  • Published : 2016.06.30

Abstract

Recently, BEMS(Building Energy Management Systems) are widely adopted in large existing buildings and there is a growing interest in applying model-assisted optimal control based on the BEMS data. Unfortunately, current BEMS are used only for measurement, data collection and rule-based operation. It would be ideal if a building's data-driven energy model can be automatically generated out of BEMS data and is used for real-time optimal control. This paper presents such approach that a data-driven genetic programming can be beneficially utilized for automatic development of a room air temperature prediction model. In this study, the room air temperature prediction model was developed and successfully validated using the genetic programming and actual BEMS data. In the paper, pros and cons of the genetic programming approach is discussed.

Keywords

Acknowledgement

Supported by : 한국에너지기술평가원(KETEP)

References

  1. Agapitos, A., Brabazon, A., & O'Neill, M. (2012). Controlling overfitting in symbolic regression based on a bias/variance error decomposition, Parallel Problem Solving from Nature-PPSN XII, 438-447
  2. Al-Homoud (2001). M. S., Computer-aided building energy analysis techniques, Building and Environment, 36, 421-433 https://doi.org/10.1016/S0360-1323(00)00026-3
  3. ASHRAE (2011). ASHRAE Handbook-HVAC Applications. Atlanta, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
  4. Braun, J. E., Klein, J. W. Mitchell, & Beckman, W. A. (1989). Applications of Optimal Control to Chilled Water Systems without Storage, ASHRAE Transactions 1989, 652-662
  5. Dolsma, J. M. (2007). Nonlinear Controller Design Based on Genetic Programming, Master's thesis, Technische Universiteit Eindhoven
  6. Gray, G. J., Murray-Smith, D. J., Li, Y., Sharman, K. C., & Weinbrenner, T. (1998). Nonlinear Model Structure Identification Using Genetic Programming, Control Engineering Practice, 6, 1341-1352 https://doi.org/10.1016/S0967-0661(98)00087-2
  7. IBPSA, Proceedings of the IBPSA (International Building Performance Simulation Association) conference('87, '91, '93, '95, '97, '99, '01, '03, '05, '07, '09, '11, '13), 1987-2013
  8. Ito, Y., Murakami, Y., Yonezawa, K., Nishimura, N., & Takagi, Y. (2008). Next Generation HVAC System, SICE Annual conference 2008, 2223-2228
  9. Koza, J. R. (1992). Genetic Programming: On the programming of computers by means of natural selection, ISBN 0-262-11170-5
  10. Kusiak, A., Xu, G., & Zhang, Z. (2014). Minimization of energy consumption in HVAC systems with data-driven models and an interior-point method, Energy Conservation and Management, 85, pp.146-153 https://doi.org/10.1016/j.enconman.2014.05.053
  11. Lew T. L., Spencer, A. B., Scarpa, F., Worden, K., Rutherford, A., & Hemez, F. (2005). Identification of Response Surface Models using Genetic Programming, Mechanical Systems and Signal Processing, 20(8)
  12. Low, P., Kie, T., & Theng, L. B. (2009). Intelligent Control of Heating Ventilation and Air Conditioning Systems, ICONIP 2008 Part II, LNCS 5507, 509-516
  13. Marenbach, P., Buttenhausen, K. D., Freyer, S., Nieken, U., & Rettenmaier, H. (1997). Data-driven structured modelling of a biotechnological fed-batch fermentation by means of genetic programming, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 211(5), 325-332 https://doi.org/10.1243/0954406971522088
  14. McCarthy, J., Minsky, M., Rochester, N., & Shannon, C. (1955). A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, AI Magazine, 27(4)
  15. Mitchell, T. M. (1997). Machine Learning, New York, McGraw-Hill
  16. Nishiguchi, J., Konda, T., & Dazai, R. (2010). Data-Driven Optimal Control for Building Energy Conservation, SICE Annual Conference 2010, 116-120
  17. Samuel, A. (1959). Some Studies in Machine Learning Using the Game of Checkers, IBM Journal, 3(3), 210-229 https://doi.org/10.1147/rd.33.0210
  18. See, L. A., Solomatine, D. P., Abrahart, R., & Toth, E. (2007). Hydroinformatics: computational intelligence and technological developments in water science applications- editorial, Hydrological Sciences Journal, 53(3), 391-396
  19. Solomatine, D. P., & Ostfeld, A. (2008). Data-driven modelling: some past experiences and new approaches, Journal of Hydroinformatics, 10(1), 3-22 https://doi.org/10.2166/hydro.2008.015
  20. Takagi, Y., Yonezawa, K., Nishimura, N., Hanada, Y., & Yamazaki, K. (2009). Next Generation HVAC System for Office Buildings - The Optimal Control Structure for DHC Buildings, ICROS-SICE International Joint Conference 2009, 2002-2007
  21. Parasuraman, K., Elshorbagy, A., & Carey, S. K. (2007). Modelling the dynamics of the evapotranspiration process using genetic programming, Hydrological Sciences Journal, 52(3), 563-578 https://doi.org/10.1623/hysj.52.3.563
  22. Poli,. R., Langdon, W. B., & McPhee, N. F. (2008). A Field Guide to Genetic Programming
  23. Turing, A. (1950). Computing Machinery and Intelligence, Mind, 59, 433-460
  24. Waltz, J. P. (2000). Computerized Building Energy Simulation Handbook, Fairmont Press
  25. Winkler, S., Affenzeller, M., & Wagner, S. (2004). New Methods for the Identification of Nonlinear Model Structures Based upon Genetic Programming Techniques, Proceedings of the 15th International Conference on Systems Science, 1, 386-393
  26. Winkler, S., Efendic, H., Re, D. L., Affenzeller, M., & Wagner, S. (2007). On-line modelling based on genetic programming, International Journal of Intelligent Systems Technologies and Applications, 2(2), 255-270 https://doi.org/10.1504/IJISTA.2007.012487
  27. Zhu, Y. (2006). Applying Computer-based Simulation to Energy Auditing: A Case Study, Energy and Buildings, 38, 421-428 https://doi.org/10.1016/j.enbuild.2005.07.007