DOI QR코드

DOI QR Code

성토지지말뚝공법의 아치형 응력전달구조 변화에 대한 수치해석적 분석

Transformation of Load Transfer Soil Arch in Geosynthetics-Reinforced Piled Embankment: A Numerical Approach

  • 이태희 (경희대학교 사회기반시스템공학과) ;
  • 이수형 (한국철도기술연구원) ;
  • 이일화 (한국철도기술연구원) ;
  • 정영훈 (경희대학교 사회기반시스템공학과)
  • 투고 : 2016.03.22
  • 심사 : 2016.05.24
  • 발행 : 2016.06.30

초록

성토지지말뚝공법에서 연약지반 강성, 성토체의 내부마찰각, 토목섬유의 인장강성, 성토고의 변화가 한계높이로 표현되는 하중 전이 흙 아치의 형태에 어떠한 영향을 미치는지 수치해석적으로 분석하였다. 매개변수 해석결과에서 연약지반 강성이 한계높이에 가장 큰 영향을 미쳤다. 주 영향요소인 연약지반 강성과 다른 매개변수의 조합에 대해 한계높이가 어떻게 변화하는지 등고선도 형태의 도표를 제시하고 분석하였다. 해석 결과는 연약지반 강성과 성토고의 조합에 대해 한계높이가 매우 민감하게 변함을 보였다. 연약지반 강성이 충분히 낮은 조건에서 성토체의 내부마찰각에 대해 한계높이가 민감하게 변하였다. 토목섬유가 포설된 조건에서는 토목섬유 인장강성의 변화가 한계높이 변화에 큰 영향을 주지 않았다.

In the geosynthetics-reinforced piled embankment the effects of soft soil stiffness, friction angle of the fill material, tensile stiffness of geosynthetics, and height of the embankment on the load transfer soil arch measured by the critical height were numerically investigated. Results from parametric studies show that the magnitude of the soft soil stiffness is the most influencing factor on the critical height. The contour charts of the critical height with respect to the combination of the soft soil stiffness and other parameters were presented. The charts show that the critical height sensitively varies with the combination of the soft soil stiffness and the height of embankment. Under the sufficiently low stiffness of soft soil, the critical height sensitively varies with the friction angle of the fill material. Once the geosynthetic layer is placed, however, the magnitude of the tensile stiffness of the geosynthetic layer hardly influences the critical height of the soil arch.

키워드

참고문헌

  1. ABAQUS (2005), Simulia, Inc.
  2. ASIRI (2012), Recommandations pour la conception, le dimensionnement, l'execution et le controle de l'amelioration des sols de fondation par inclusions rigides.
  3. BS 8006 (2010), Code of practice for strengthened/reinforced soils and other fills, British standards institution.
  4. Cao, W.P., Chen, Y.M., and Chen, R.P (2006), "An Analytical Model of Piled Reinforced Embankments Based on the Principle of Minimum Potential Energy", Advances in Earth Structures@sResearch to Practice, pp.217-224, ASCE.
  5. CUR 226 (2010), Design Guideline Piled Embankments (in Dutch).
  6. EBGEO (2010), Recommendations for Design and Analysis of Earth Structures using Geosynthetic Reinforcements, German Geotechnical Society.
  7. Girout, R., Blanc, M., Dias, D., and Thorel, L. (2014), "Numerical Analysis of a Geosynthetic-reinforced Piled Load Transfer Platform - Validation on Centrifuge Test", Geotextiles and Geomembranes, Vol.42, No.5, pp.525-539. https://doi.org/10.1016/j.geotexmem.2014.07.012
  8. Hewlett, W.J. and Randolph, M.F. (1988), "Analysis of Piled Embankments", Ground Engineering, Vol.21, No.3, pp.12-18.
  9. Jenck, O., Dias, D., and Kastner, R. (2009), "Three-dimensional Numerical Modeling of a Piled Embankment", International Journal of Geomechanics, pp.102-112.
  10. Gu, J. (2011), Computational Modeling of Geogrid Reinforced Soil Foundation and Geogrid Reinforced Base in Flexible Pavement, PhD thesis, Hebei University, China.
  11. Lee, T., Lee, S.-H., Lee, I.-W., and Jung, Y.-H. (2015), "A Comparative Study on Distribution of Tension Forces in Geosynthetics with Directional Stiffness Using 3-dimensional Finite Element Analysis", Korean Society of Civil Engineers 2015 Conveition, pp.65-66 (in Korean).
  12. Le Hello, B. and Villard, P. (2009), "Embankments Reinforced by Piles and Geosynthetics-Numerical and Experimental Studies Dealing with the Transfer of Load on the Soil Embankment", Engineering Geology, Vol.106, pp.78-91. https://doi.org/10.1016/j.enggeo.2009.03.001
  13. McGuire, M. (2011), Critical height and surface deformation of column-supported embankments, Phd thesis, Virginia Polytechnic Institute and State University, USA.
  14. McKelvey, J.A. (1994), "the Anatomy of Soil Arching", Geotextiles and Geomembranes, Vol.13, pp.317-329. https://doi.org/10.1016/0266-1144(94)90026-4
  15. Naughton, P. (2007), "The Significance of Critical Height in the Design of Piled Embankments", Soil Improvement, 1-10.
  16. Nordic Guideline (2004), Nordic guidelines for reinforced soils and fills, Nordic Geosynthetic Group.
  17. Perkins, S. W. (2000), "Constitutive Modeling of Geosynthetics", Geotextiles and Geomembranes, Vol.18, No.5, pp.273-292. https://doi.org/10.1016/S0266-1144(99)00021-7
  18. Public Work Research Center (2000), Manual on Design and Execution of Reinforced Soil Method with Use of Geotextiles, Public Work Research Center, pp.248-256 (in Japanese).
  19. Van Eekelen, S.J.M., Bezuijen, A., and Tol, A.F. (2012), Model Experiments on Piled Embankments Part I, Geotextiles and Geomembranes, Vol.32, pp.69-81. https://doi.org/10.1016/j.geotexmem.2011.11.002
  20. Van Eekelen, S.J.M. (2015), Basal Reinforced Piled Embankments: experiments, filed studies and the development and validation of a new analytical design model, PhD thesis, Delft University of Technology, Netherlands.
  21. Zaeske, D. (2001), Zur Wirkungsweise von unbewehrten und bewehrten mineralischen Tragschichten uber pfahlartigen Grundungselementen. Schriftenreihe Geotechnik, Uni Kassel, Heft 10 (in German).
  22. Zhuang, Y. and Cui, X. (2015), "Analysis and Modification of the Hewlett and Randolph Method", Proceedings of the Institution of Civil Engineers - Geotechnical Engineering, Vol.168, No.2, pp.144-157. https://doi.org/10.1680/geng.14.00014
  23. Zhuang, Y. and Ellis, E. (2014), "Finite-element Analysis of a Piled Embankment with Reinforcement Compared with BS 8006 predictions", Geotechnique, Vol.64, No.11, pp.910-917. https://doi.org/10.1680/geot.14.P.110