DOI QR코드

DOI QR Code

Design of Thermodynamic Cycle and Cryogenic Turbo Expander for 2 kW Class Brayton Refrigerator

2 kW급 브레이튼 냉동기용 열역학 사이클 및 극저온 터보 팽창기 설계

  • Received : 2015.08.28
  • Accepted : 2016.04.25
  • Published : 2016.06.30

Abstract

The High Temperature Superconducting power cables (HTS power cables) become increasingly longer to commercialize the HTS power cable system. Accordingly, demands on refrigerators of large cooling capacity per a unit system have been increased. In Korea, it is currently imported from abroad with the high price due to insufficient domestic technologies. In order to commercialize the HTS power cables, it is necessary to develop the refrigerators with large cooling capacity. The Brayton refrigerators are composed of recuperative heat exchangers, compressors and cryogenic turbo expanders. The most directly considering the efficiency of the Brayton refrigerator, it depends on performance of the cryogenic turbo expander. Rotating at high speed in cryogenic temperature, the cryogenic turbo expanders lower temperature by expanding high pressure of a helium or neon gas. In this paper, the reverse Brayton cycle is designed and the cryogenic turbo expander is designed in accordance with the thermodynamic cycle.

초전도 전력 케이블의 상용화 노력에 따라 점차 장선화 되면서, 단위 냉각 시스템당 냉각용량이 큰 대용량 냉동기의 필요성이 증가하고 있다. 국내에서는 극저온 냉동기에 대한 기술 부족으로 인해 현재 극저온 냉동기는 해외 선진사로부터 고가의 비용으로 수입되고 있다. 초전도 전력 케이블의 상용화를 위해서는 대용량 브레이튼 냉동기의 국내 개발이 시급하다. 대용량 브레이튼 냉동기의 구성은 복열식 열교환기, 압축기, 극저온 터보 팽창기로 구성되어 있으며, 냉동기 효율과 가장 직접적인 연관이 있는 것은 극저온 터보 팽창기이다. 극저온 터보 팽창기는 극저온에서 고속으로 회전하면서 고압의 헬륨 혹은 네온 가스를 팽창시켜 온도를 낮추는 역할을 한다. 본 논문에서는 역브레이튼 냉동 사이클을 설계하고, 이에 적합한 극저온 터보 팽창기를 설계하였다.

Keywords

References

  1. Y. F. Bi, "Cooling and Cryocoolers for HTS Power Applications," Applied superconductivity and electromagnetics, Vol. 4, No. 1, pp. 97-108, November, 2013.
  2. S. T. Dai, L. Z. Lin, Y. B. Lin, Z. Y. Gao, Y. F. Fang, L. H. Gong, Y. P. Teng, F. Y. Zhang, X. Xu, G. Li, L. F. Li, L. Y. Xiao, "The threephase 75 m long HTS power cable," Cryogenics, Vol. 47, pp. 402-405, July-August, 2007. https://doi.org/10.1016/j.cryogenics.2007.04.020
  3. C. H. Lee, D. M. Kim, H. S. Yang, S. H. Kim, "Design and Analysis of Cryogenic Turbo Expander for HTS Power Cable Refrigeration System," Journal of the Korean Society of Manufacturing Process Engineers, Vol.14, No.3, pp.141-148, June, 2015. https://doi.org/10.14775/ksmpe.2015.14.3.141
  4. H. M. Chang, M. J. Chung, M. J. Kim, S. B. Park, "Thermodynamic design of methane liquefaction system based on reversed-Brayton cycle," Cryogenics, No. 49, pp. 226-234, June, 2009.
  5. A. T. Sayers, "Hydraulic and Compressible Flow Turbomachines," McGraw-Hill, pp.363-372, 1992.
  6. D. G. Shepherd, "Principles of Turbomachinery," The Macmillan Company, pp. 86-94, 1964.
  7. O. E. Balje, "Turbomachines : a guide to design, selection and theory," JOHN WILEY & SONS, pp. 3-328, 1981.
  8. Hirokazu Hirai, Shinsuke Ozaki, Norihisa Nara, Masaki Hirokawa, Shigeru Yoshida, "Development of a Turbo-Brayton Cooling System for HTS Power Devices," J-STAGE, Vol.48, No.7, pp.352-357, August, 2013.
  9. Frank M. White, "Fluid Mechanics 7th Edition in SI units," McGraw-Hill, pp.791-841, 2012.
  10. R. K. Turton, "Principles of Turbomachinery 2nd Edition," Chapman & Hall, pp.183-192, 1995.
  11. S. K. Ghosh, "Experimental and Computational Studies on Cryogenic Turboexpander," Ph.D. thesis, Mechanical Engineering Department, National Institute of Technology, 2008.