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SYSTEM OF GENERALIZED NONLINEAR
REGULARIZED NONCONVEX VARIATIONAL
INEQUALITIES

SALAHUDDIN

ABSTRACT. In this work, we suggest a new system of generalized
nonlinear reqularized nonconvex variational inequalities in a real
Hilbert space and establish an equivalence relation between this sys-
tem and fixed point problems. By using the equivalence relation we
suggest a new perturbed projection iterative algorithms with mixed
errors for finding a solution set of system of generalized nonlinear
regularized nonconver variational inequalities.

1. Introduction

Variational inequalities introduced by Stampacchia [16] provided us
with a powerful source to study a wide class of problems arising in me-
chanic, physics, optimization and control theory, linear programming,
economics and engineering sciences, see [4,5,7]. In recent years, sev-
eral authors studied different type of systems of variational inequalities
and suggested iterative algorithms to find the approximate solutions of
such system (see [3,6,9,11,14,19,20]). We remark that the almost all
results concerning the system of solutions of iterative scheme for solv-
ing the system of variational inequalities and related problems are being

Received March 10, 2016. Revised May 11, 2016. Accepted May 25, 2016.

2010 Mathematics Subject Classification: 49J40, 47HO6.

Key words and phrases: System of generalized nonlinear regularized nonconvex
variational inequalities, uniformly r-prox-regular sets, (x, \)-relaxed cocoercive map-
ping, inversely y-strongly monotone mapping, strongly monotone mapping, iterative
sequences, algorithm, convergence analysis, mixed errors.

© The Kangwon-Kyungki Mathematical Society, 2016.

This is an Open Access article distributed under the terms of the Creative com-
mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by
-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduc-
tion in any medium, provided the original work is properly cited.



182 Salahuddin

considered in the setting of convex sets. Consequently the techniques
are based on the projections of operator over convex sets, which may
not hold in general, when the sets are nonconvex. It is known that the
unified prox-regular sets are nonconvex and included the convex sets as
special cases, (see [5,21]).

Motivated by the recent works (see [1,2,8,10,12,13,17,18]), in this com-
munication, we suggest a new system of generalized nonlinear reqularized
nonconvex variational inequalities in a real Hilbert space. We establish
the equivalence between the system of generalized nonlinear reqularized
nonconvexr variational inequalities and some fixed point problems. By
using the equivalence relation, we define a perturbed projection iterative
algorithms with mixed errors for finding a solution set of the aforemen-
tioned system. Also we prove the convergence of the defined iterative
algorithms under suitable assumptions.

2. Preliminaries

Let H be a real Hilbert space with a norm and an inner product
denoted by || - || and (-,-), respectively. Let K be a nonempty convex
subset of H and C'B(H) denote the family of all closed and bounded
subsets of H.

DEFINITION 2.1. The proximal normal cone of I at a point u € H is
given by
NE(w) ={¢CeH:uec Pclut+al)},
where o > 0 is a constant and P the projection operator of H onto K,
that is,
Pic(u) ={v e K di(u) = |lu—vl},
where dic(u) is the usual distance function to the subset IC, that is,

de(u) = inf [ — v].
LEMMA 2.2. Let K be a nonempty closed subset of H. Then ( €
NE(u) if and only if there exists a constant o > 0 such that
(C,v—u) <allv—ul? YveK.

DEFINITION 2.3. The Clarke normal cone, denoted by NS (u) is de-
fined as

Nic (u) = @o[Ng (u)),
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where ¢o.A means the closure of the convex hull of A. It is clear that
NE(z) € NE(x), but converse is not true in general. Note that NS (z)
is closed and convex, but Nf(z) is convex, which may be not closed
(see [5,17]).

DEFINITION 2.4. For any r € (0,4+00], a subset I, of H is said
normalized uniformly prox-regular (or uniformly r-prox-regular) if every

nonzero proximal normal to K, can be realized by an r-ball. This means
that for all T € K, and all ¢ € N (%) with ||¢]| =1,

1
(Ge—7) < olle—7% v e K.

LEMMA 2.5. [4] A closed set K C H is convex if and only if it is
proximally smooth of radius v for every r > 0.

PROPOSITION 2.6. Let v > 0 and let IC, be a nonempty closed and
uniformly r-prox-regular subset of H. Set

U(r)={ue X :0<dg. (u) <r}.
Then the following statements are hold:

(a) for all x € U(r), P, (x) # 0;
(b) for all v € (0,7), P, is Lipschitz continuous mapping with con-
stant —— on

Uy ={ueH:0<dk (u) <r'};

(c) the prozimal normal cone is closed as a set-valued mapping.

T

From Proposition 2.6 (c¢) we have NS (z) = N (). Therefore we
define Ni, (z) = NE (z) = Nf () for a class of sets.

DEFINITION 2.7. A single-valued mapping h : H — H is said to be
(i) monotone if
(h(z) = h(y),x —y) 20, Vo,y € H,
(ii) p-strongly monotone if there exists a constant 8 > o such that
(h(x) = h(y),x —y) > Bllz — yl?, Yo,y € H,

(iii) inversely S-strongly monotone if there exists a constant 5 > 0 such
that

(h(z) — h(y),z —y) > Bllh(z) — h(y)|*, Vz,y € H,
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(iv) o-Lipschitz continuous if there exists a constant ¢ > 0 such that
1h(z) = (W)l < ollz —yll, Yo,yeH.

DEFINITION 2.8. Let @Q : H x H — H be a nonlinear single-valued
mapping and T : H — 2 be a set-valued mapping. Then @ is said to
be

(i) monotone if
(Qu,z) — Qv,x),xr —y) >0, Ve,ye H,u e T(x),veT(y),

(ii) (k, A)-relaxed cocoercive with respect to the first variable of @) and
T if there exist constants x and A such that
(Qu, ) = Qv, ),z —y) > =] Q(u, z) — Q(v, z)||* + Az — y1?,
Ve,y € Hou € T(x),v € T(y).

(iii) ¢-Lipschitz continuous with respect to the first variable and p-
Lipschitz continuous with respect to the second variable if

Q(xlayl) - Q(%;Zh)” < CHI1 - $2|| + QHyl - y2H7 Vo, T2, 91, Y2 € H.

DEFINITION 2.9. A two-variable set-valued mapping 7' : H x H —
2" is ¢ — D-Lipschitz continuous in the first variable, if there exists a
constant £ > o such that, for all x, 2’ € H,

D(T(x,y), T(2',y) < Elle— 2|, Vy.y €™,
where D is the Hausdorff pseudo-metric, that is, for any two nonempty

subsets A and B of H
ZS(A, B) = max {sup d(x, B),supd(y, A)} :

€A yeDB

3. System of Generalized Nonlinear Regularized Nonconvex
Variational Inequalities

In this section, we introduce a new system of generalized nonlinear
reqularized nonconvex variational inequalities in a Hilbert space and in-
vestigated their relations.

Let T;,F; : H x H — CB(H) be nonlinear set-valued mappings,
Qi : H x H — H single-valued mappings and let g; ,h; : H — H be
nonlinear single-valued mappings such that IC, C ¢;(H) (i = 1,...,N).
For any constants 7;(i = 1,...,N), we consider a problem of finding
r; € H(i = 1,...,N) and w; € Ty(xjr1,2)(i = 1,...,N — 1), uy €
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TN($1,$N), V; € F'Z(l‘l_,_l,l'z)(l = 1,...,N — 1) and UN € FN<ZL‘1,1’N)
such that h;(x;) € K, (i=1,...,N) and

(miQi(ui, vi) + hi(w;) — gi(@ir1), gi(x) — hizi)) + %Hgi(iﬁ) — hy(z)|?
>0 (i=1,...,N—1),
(Mv@n (un,vn) + hy(@n) — gn(21), gn (2) — A (2N))
+ollgn (@) = hy(zn)[? 2 0, Vo € Ky, gi(2),. .., gn(2) € K.
(3.1)
The problem (3.1) is called the system of generalized nonlinear regular-
1zed nonconvexr variational inequalities.

LEMMA 3.1. Let K, be a uniformly r-prox-reqular set, then the prob-
lem (3.1) is equivalent to findingx; € H(i =1,...,N) andw; € T;(x;41, ;)
(’L =1,...,N— 1), uy € TN(xl,xN), v; € E((L’H_hl’z)(Z =1,...,N — 1)
and vy € Fn(z1,xy) such that

{ 0 € 0iQi(us, v;) + hi(w:) — gilwn) + NE (ha(x:)), (i =1,...,N = 1)
0 € nnQn(un,vn) + hn(zn) — gy (21) + NE (hn(zn)),

(3.2)
where N (s) denotes the P-normal cone of K, at s in the sense of
nonconvex analysis.

Proof. Let (x;,u;,v;) with z; € H, hi(z;) € K, (i = 1,...,N) and
u; € Ti(@ipr,2:) (0 =1,...,N=1),uy € Ty(21,2n), v; € Fi(xi41,2;)(i =
1,...,N—=1), vy € Fy(z1,2y) be solution sets of the system (3.1). If

mQ1(ur,v1) + hi(r1) — gi(z2) =0

because the vector zero always belongs to any normal cone, then

0 € mQ1(ur,v1) + ha (1) — g1(x2) + NE (b (1))
If
Mm@ (ur,v1) + ha(z1) — gi(x2) # 0
then for all z € H with g;(z) € K,

(=(mQ1(ur, vi)+hi(z1)—g1(22)), g1(x) = ha(21)) < 2—1T|!91(93)—h1(x1)\|2-
(3.3)

From Lemma 2.2 we have

—(mQ1(u,v1) + hi(z1) — g1(x2)) € NI}CDT(hl(Il))
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and
0€ 7]1@1(“1,1)1) + hl(l‘l) - 91(@) + NIICDT(hl(xﬁ)‘ (3-4)
Similarly

0e anz(uzaUz) + hl(l'z) — gl(:vN) + ngr(hl(ffl)) (’L = 1, e 7]\/v — 1),
0 € nnQn(un,vn) + hn(2n) — gn(21) + NE (hy(zn)).

(3.5)
Conversely if (z;,u;,v;) with x; € H, hy(x;) € K, (i = 1,...,N) and
w; € Ty(wipr,2)(i=1,...,N=1),uny € Ty(z1,2n), v; € Fi(xi11,2:)(i =
1,...,N—=1), vy € Fy(x1,zy) are solution sets of the system (3.2) then
from Definition 2.4, z; € H(i = 1,...,N) and u; € Ti(xip1,2)(i =
]_,...7N — 1)7 uy € TN(Il,ZL‘N), v; € .FZ(ZEH_l,ZL‘Z)(Z = ]_,...,N — 1),
vy € Fy(x1,zy) with hi(x;) € K,.(i = 1,..., N) are solution sets of the
system (3.1). O

The problem (3.2) is called system of generalized nonlinear regularized
nonconvex variational inclusions.

4. Main results

LEMMA 4.1. Let T;, F;, Q;, gi, hi and n;(i = 1,2,--- | N) be the same
as in the system (3.1). Then (1,...,ZN,U1,...,UN,V1,...,UN) With
x; € H, hi(x;) € K, foralli=1,...,N and uy € Ty(x2,21), ...,un_1 €
TNfl(xN;fol); uy € TN(SL’l,xN), v € F1<5132,371), ..., UN—1 € Fn_q
(xn,zN_1), vn € Fy(z1,2N) are solution sets of the system (3.1) if and
only if

hi(z;) = Pe,lgi(xn) — 0:Qi(wi,v)] (i =1,...,N — 1), (4.1)
hn(zn) = P lgn(21) — nv@n(un, vn)], .

where Py, 1is the projection of H onto the uniformly r-proz-regular set

K.

pT'OOf. Let (.1'1, ey TN, ULy, UNL UL, .. ,’UN) with x; € H, hl(l'l) €
K. foralli=1,...,N and u; € Ty(xq,21), ..., un—1 € Ty_1(xn,TN_1),
uy € Tn(z1,2n), v1 € Fi(wg,21), ..., vn—1 € Fnoa(on,on-1), v €
Fy(z1,zx) are solution sets of the system (3.1). Then from Lemma 3.1
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we have

0 € mQi(ui, vi) + hi(zi) — gi(zir1) + NE (hi(x:)) (i =1,...,N = 1),
0 € nnvQn(un,vn) + hn(2n) — gn(21) + NE (hy (2 ))

(4.2)
o ) gil@in) =niQiluivi) € (T4 N ) (hiw)) (i = 1., N = 1),
P
gn(z1) = nn@n(un,vn) € (I + Nic ) (hn(zn)),,
(4.3)
hi(zi) = Pe,[gi(ziv1) — n:Qiwi, vi)|(i = 1,..., N = 1), (4.4)
hn(zn) = P, [gn(21) — nv@n (un, vn)],
where [ is an identity mapping and Pc, = (I + N,?T)_l. O]
REMARK 4.2. The inequality (4.1) can be written as follows
¢ = 9i(Tiv1) — 0iQi(us, vi), hi(w;) = Pe,[ql(i =1,...,N = 1)
av = gn(21) — n@n(un,vn), hy(zy) = P, [gn],
(4.5)

where 1; > 0,7 =1,..., N are constants.

The fixed point formulation (4.5) enables us to construct the following
perturbed iterative algorithms with mixed errors.

ALGORITHM 4.3. Let T3, F;, Qi, gi, h; and n;(: = 1,2,--- | N) be the
same as in the system (3.1) such that hy,...,hy : H — H be onto
operators. Let €?,....e%, r),....r% € H, ap € R and 1y > 0. For given
@O, 0% € H,welet 29,..., 2% € H, uy € Th(wa, 21), ug € To(xs, 12),

csun—1 € Ty_q(xn,xzn_1), uy € Tn(x1,2N), v1 € Fi(xe,21), V9 €
Fy(x3,29), ..., vn_1 € Fy_1(xn,2N_1), vy € Fn(x1,2y) such that

hi(z)) = Pe, (6)); af = (1 — a0)q) + co(gi(ady 1) — m0Qs(ug, v) + €f)
+r9(i=1,...,N —1),
hn(2%) = Pe, (@}): an = (1 — ao)qly + ao(gn(2?)
—noQn (U, v%) + €eX) + 13-
(4.6)
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We Choose z1,...,2Y € H such that hi(z}) = P (qi), . hn(z)) =
Py, (qx). By Nadler Theorem [15], there exists

(

U ET( ’L-‘rl’x?)

Juf —uill < (14 (L4+n)")D(Ti(a?,y, 27), Ti(2iq, i)
(t=1,...,N—=1),

U GF( Lit1 ?)

[0) =il < (14 (1 +n) " )D(Fi(xi, 27), Fi(zi, i) (@7)
(i=1,...,N—=1),

uy € T (2}, 2%); ~

Juy = upll < (1+ (14 n)"")D(Tn (2, 2%), Tn (21, T))),

vjl\f € FN(ZE?,Q?%,);

([0} — ol Il < (14 (1 +n)")D(Fy (a8, 2%), Fx(z}, 2)).

Continuing the above process inductively, we can obtain the sequences
{x?}%o:m Tty {‘T%}SLO:O? {u?}%ozoa o {u%}io:o by USing

([ hi(z}) = P, (q7);
qanrl (1 = an)q + anl(gi(@fy) — miQilui, o) +ef) + 17
(i=1,...,N—=1),
hy(xy) = P, (qy);

L g = (1 — an)giy + anl(gn (@7) — nnQn (Ul viy) + €) + 7,

(4.8)
and
u ET( 2+17x1); R
HU — un-ﬁ-lH < ( + (1 ) )D(T( Z+17xz)77_2i(x?1_11,1'?+1))
(t=1,...,N—1),
U € F( 2+17 z>; R
o= o P (1 (1 ) D (e, 28), el ™)
(t=1,...,N—1),
uy € T (2t a%);
||u?v n+1|| < ( + (1 +n) )D(TN(xlij) TN( n+1 an+1))7
vy € (e, 2);
\ ”URI - UTL-HH < ( + (1 +n)_1)D(FN($1,$N) FN( n+1 a:?vﬂ)),
(4.9)
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1 ni|oo n 1 oo n\|oo
where 0 < «,, < 1 is a parameter and {e}>,, ..., {eX 22, {rT}>,,
e, are sequences in H to take into account of a possible inexact

computation of the resolvent operator satisfying the following conditions:

lim e = lim r] =0;
n—-oo n——oQ
o) [e.e]
Dollep —ei < oo, Yl =M < oo, (4.10)
n=1 n=1

foralli=1,... N.

THEOREM 4.4. Let T;, F;, Q;, g;, hi,n;, fort =1,..., N be the same
as in the system (3.1) such that, for eachi=1,..., N,

(i) Qi is (;-Lipschitz continuous with respect to the first variable with
a constant (; > 0 and p;-Lipschitz continuous with respect to the
second variables with a constant g; > 0;

(i) T; is & — D-Lipschitz continuous in the first variables with a con-
stant & > 0;

(iii) F; is p; — D-Lipschitz continuous in the first variables with a con-
stant p; > 0;

(iv) Q; is (ki, \;)-relazed cocoercive with respect to the first variable of
Q; and T; with constants k;, \; > 0;

(v) h; is B;i-strongly monotone with respect to a constant B; > 0 and
o;-Lipschitz continuous with a constant o; > 0;

(vi) g; is inversely ~;-strongly monotone with a constant ~; > 0 and
wi-Lipschitz continuous mapping with a constant pu; > 0;

If the constants n; > 0 satisfy the following conditions:

it = @ (st — (= 20 = map)

-l <

g ré? ’
ol R (e - - - )

N — = | < 5 ) (4.11)
N rén
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i > 62— (=P (1= ),

TRy > £N\/r2,u?v —(r =121 —m)?, (4.12)

rpg > (r—r) (1 —m),...,ruxn > (r—1")(1 —m), (4.13)

=4/1—2B; +0?%, 2m<1+0} (4.14)

for eachi=1,...,N, wherer" € (0,r), then there exists x%,...,x% € H

and

with hy(x3), . .. ( }}) € K, andut € Ty(x3,x7),. . ,uly_1 € Tn_1(xy, T 1),
uy € TN(xT,xN) vi € Fi(xs,x}),.. ,on_y € Fyoa(xy, o 1), 08 €
Fn(xf,2%y) such that (z3,..., 2%, ul,...,ul, v, ..., vy) is a solution

set of system (3.1) and sequences { (a7, ..., xR, ul, ... ul, v}, ... 0%) 0,
suggested by Algorithm 4.3 converges strongly to (x3,..., x5, uj, ..., uy,

VY, UN)-

Proof. From (4.8), we have

7™ =gt
< (I-an)llgd —af 1“
+allg1(zy) — g1 (5™ )_771(@1(“71171)1) Qi(uf™, vy~ 1))”

‘f'O‘n“élZ - 6711_1” + ||7"1 -y 1||

< (T—an)lld? — a7l + an{llah — 257" = (g1(25) — gi (a5 ™))
+la5 — 56'3 L ﬁl(Ql(U?7U1) - Ql( hen)l
+m|[Q1(uy™,vf) — Qi(u DI}
+agllet — e + ||7“1 -y 1|| (4.15)

Since gy is inversely v;-strongly monotone with respect to a constant
v1 > 0 and pq-Lipschitz continuous with a constant p; > 0, we get

n—1

25 — 257" = (g1(23) — gr (@3 )" = [l —
—2(g1(a5) — gr(a5 ), 25 — 257") + g1 (2h) — g (27

o

< oz — 237 = 2nlloa(@3) — gu(az DI + lloa(az) — gz )
< o — 257 * = 2yl — @3+ pdlla — 23
< (L1 = 2m)llag — a3~ (4.16)
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Since @1 is (1-Lipschitz continuous with respect to the first variable
with constant ¢; > 0 and second variable with constant o; > 0, and T}
is & — ZS—Lipschitz continuous in the first variables with constant & > 0,
and F} is p; — ﬁ—LipSChitz continuous in the first variables with constant
p1 > 0, we get

Q1 (uf,v}) = Qului "))l < Gllut —wi ™|

1 -
Gi(1+ E>D(T1 (%, 27), Ty (x5~ ", 2t h)

IN

IA

GO+ el —a ()

Q1 (ui™ v7) = Qu(ui o ) < alloy — o7l

1
< o(1+ E)D(Fl(l’g, o), Fi(zy ' 2t ™h)

1 _
< o+ )plat — a7, (4.18)

Since @ is (K1, A\)-relaxed cocoercive with respect to the first variable
of )1 and T} with a constants 1, A\ > 0, respectively and (;-Lipschitz
continuous with respect to the first variable with a constant ¢; > 0 and
T is & — D-Lipschitz continuous in the first variables with a constant
& >0, we get

log — 257" = m(Qu(uf, of) — Qului ™, o!))|* = [lag — 25|
=2 {Qu(uf,v}) — Qu(ui ™ v), 25 — 257"
0@ (uf, of) — Qu(uwi™", o)
< oy — 237 = 2 (=ma [ Qu(uf, oF) — Qu(wy ™", o)

A2y — 2P + et — wi |

<l — 2372 = 2m (R GG+ 0T 2EN(D(Ty (2, ), T (a5t 2t

s — 37 P) + G+ (DT (g, 27), Ty (o 21 7)))?

< l2h =23 = 2 (= G+ 0T )ER l2h — ap )

+Aflay — 2y 7P (4 7)€ ey — 2y

1 1 _
< (=28 - G+ ) + G+ Pt — a7 (419)
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It follows from (4.15)-(4.19), we obtain that

g+ — gl
< (1 an)lg — g+ an (/1 + 21— 23)
2 2¢2 Ly, 2942 L
+4/1 = 2n;(A; _’fiCifz(leﬁ) )+ 107G i(l_'_ﬁ) |
1 n n— n n— n n—
+0i(1 + E)Pi)HmiH - xz‘+11 + anllef — e 1” + || =
(i=1,...,N—1),
lgnt' — ail]

< (- ol — g+ o (314 (1 = 29w)

+\/1 — 20NNy — KN CHER (1 + %)2) +NCRER (1 + %)2

1 n n— n n—
+on(1+ —)ow)llat — 217 || + anller — 7'
+lr =) (4.20)
By using (4.8), we get that

e
< ot =27 = (a(@h) = ha(ay ) + 1 (27) = ha (277

1 1
= 2t =27 = (a(a}) = ha (@7 )] + HPKT(Q?) Pe, (@)l
< ot =2t = (@) = @I+ —— ot — a7l (4.21)

Since hy is fi-strongly monotone with respect to the constant #; > 0
and o;-Lipschitz continuous with a constant oy > 0, we have

o7 — 277" = (ha(2]) = hu(27™)|?
= ot =277 = 2(ha(2}) = ha(2771), 2f — 277
[ (2F) = b2
< 2t =2 = 28 |2t — 2P+ offla - 2t
= (1-28 +af)flat — 277" (4.22)
By (4.21) and (4.22), we obtain

—1||2

o =277 < \/1 =281 +offlaf — 277! e — g (4.23)
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that is

n n—1 T n n
Ty — T < Q1 — 9
laf =il < el —

Similarly, we can prove that

1. (4.24)

o — 277 < — gt =M =2,...,N - 1),
v )

-
) (1—y/1-2Bi+0?

n _ ,n—1 T n _ n—1
I =5 < Ak — 4

(4.25)
It follows from (4.20), (4.24) and (4.25) that

r(¥; + Qi(n))
(r—r)(1 = miz)
+ag el — e?‘lH + = Y@ =1,...,N —1),

n+1 n n n—1 T(ﬁN + QN(TL)) n n
lav™ —anll < A —an)llay —ay ||+ om =0 =) a1 — &

n+1

I =gl < (1—an)llg — ¢l + an gl

gy — @'

1

+olel — ex T+ [y — i (4.26)

where ¥; = \/1+,u22(1—2%), T = \/1—25i+<71’2 and

) = /1~ 2002 - w220+ by e e ns by,

foralle=1,2,..., N.
Now we define || - ||« on H x ... x H by
—_———

N —times
=  forall (zy,.... X H.
[ o)l =l Hlawl, forall (e, an) € Hx ... x H
N —times
It is obvi that X ... X -||+) is a Hilbert , lyi 4.26
is obvious that (H H, |- |l+) is a Hilbert space, applying (4.26)

N —times
we have

I d™) = ()l

< (I—an)lgl, - dk) — (@ an Dl
+anOm)|(qf, . ax) — (- av -
+an||(er, ... en) — (er e .
+H[(rf, . rN) — (7‘1”_1,...,7“%*1)||*. (4.27)
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Put
R r(th + Qi (n)) r(Un + Qn(n))
R e ] SCEY
Let ©(n) — O, as n — oo, where
D B R Y r(In +Qn)
e (e R e ) R

By (4.11),we know that 0 < © < 1. For © = $(© 4+ 1) € (0,1) there

exists ng > 1 such that O(n) = © for each n > no. So it follows from
(4.24) that, for each n > no,

I a™) = (@) aw)

< (M=)l an) = (@ gy Dl
+0,Oll(gh, ) — (@ g Y
+an||(€r, ... en) — (er ™t e Y.
HE i) = O D

= (1= =O)(g.- - qr) — (@ gy Dl
+an||(er, ... en) — (erh . e Y.
HIE ) = 0P D

< (1-an(1-6)) ((1 — (L= v = (@2 ay )k
Fan|l(er e ) = (eF e ).
S (GRS a0 B G [
Fagl(ef, . en) = (e Dl
HIE i) = D

= (1 - Oén(l - é))2||(Q?_1a v 7qxf_1) - (q?_Qa R 7qxf_2)||*
—|—Oén<<1 - Oén(l - 6))”(6711717 SRR 67\;1) - (6?727 <. 7enN72>H*

et eh) = (e L)
+(1 - Oén(l - G)))H(rlila <o 771%71) - (T’?iZ, e 770%72)H*
+||(7{L7"'7T%) - (T{Lilw"arjr\Lfil)”*

IN
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< (L= an(1=0))" (@, gy ™) = (@ )

n—no

Q) )i— n—(i—1 n—(i—1 n—i n—i
+Oén2(1—04n(1—@>> 1||(€1 ( )7‘-'76N( ))_(61 yo s €N )H*
=1
+ Y A= an =) e ) )
=1

Thus, for any m > n > ng, we get that

(g, an) — (a7 ) ||«

m—1
< D ™ = (s d)l
j=n
m—1
< (1= an(1 =07 l(g ™, . ™) = (1% )]s

j=n i=1
n—(i—1 n—(i—1 n—1 n—1
e~ e Yy = (e e
m—17—no
+3 Y (1 —a,(1-6))
j=n i=1
n—(1—1 n—(1—1 n—i n—i
S s B (a1

(4.31)
Since (1 — a, (1 — (:))) € (0,1), it follows from (4.10) and (4.31) that

I(q", - an) = (@ - a)lls = lat" = ¢l + -+ llay —anll — 0

as n — 0o. So {¢''}(i = 1,---,N) are Cauchy sequences in #, there
exist ¢f(i =1,---,N) € H such that ¢ — ¢(i =1,--- ,N) asn —
00. By (4.24) and (4.25), it follows that the sequences {z}(i = 1,--- , N)
are also Cauchy sequences in H. Hence there exist zf(i = 1,--- ,N) €
H such that 2} — 2f(i = 1,--- ,N) as n — o0o. Since for each

~

t=1,...,N, T; are &-D-Lipschitz continuous in the first variable and
also Fj are p;-D-Lipschitz continuous in the first variable, it follow from
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(4.7) that
luf =™ < (U (4 ) DT, ), Tt o)
< (I+A+n) )&l -2 —0.(=1,...,N-1)
Jof = o< (L (14 ) ) D(E (e, Z>,F-<x?:f,x?+l>>
< (4 il — T — 0, =1,...,N = 1)
e —ui™ < (14 (14 n0) )D(Tn (], 25%), T (1™, ai™))
< (14 (1 +n) et =2t — 0,
oy — ol < (L4 (L4 n) )D(Ey(af, ah), B (a7, ai™))
< (1+@Q+n) Y|t — 28] — 0, as n — co.
(4.32)
Hence {u'}(i = 1,---, N) are Cauchy sequences in H and also {v}'}(i =
1,---, N) are Cauchy sequences in H and so there exist u(i = 1,--- | N) €
H such that 2 — zf(i = 1,---,N) as n — oo. Further u} €
Ty (z%, ) we have
d(uy, Ty(z3, 7)) = inf{|luy — ¢ : £ € Ti(a3, 27)}
< lug —uf || + d(uy, Ty, 27))
< i — il + D(Ta(ah, 2}), Ta(ah ™ 2} th))
< luy — || + |25 — 25 — 0, as n — oo.

(4.33)

Hence d(uf, Th (x5, 27)) = 0 and so u} — uj € Ty (a5, x7).

Similarly we can show that d(v}, Fi(z5,27)) = 0 and so v} — v} €
F (Qf;, $T)

By the same method, we can prove that

(w1, T4 - lwiy —ul || + ||z —2f]| — 0,(i =3,...,N)
d(vi_y, F, y Ti1 | — vl + 2 —2il —0,(i=3,...,N)
(U*N’TN(:E >x7\7)) < ||u}<\7 _UNH + Hxl - xl” — 07

( V) < vy = ol + 27 — 27| — 0, as n — oo.

* * | *

i— 1—1 1—1

* *
vy

11—

U

@
,_.

=¥ R X —
<.

*
v, En (23, x

Therefore u € Ti(xf,,,2f)(i = 2,...,N — 1)uy € Ty(z},2}) and also
vi € Fi(xp,,x7)(i = 2,...,N — 1),uy € Fy(a},z}y). Since g; and

7
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Q:(i=1,...,N) are continuous, it follows from (4.8) and (4.10) that
(]: = gi(x:—i-l) - sz(Ufa Uz*)(l =1,..., N — 1)7
dy = gn(z]) — nvQn (uy, vy). (4.34)

Since hy, ..., hy and Px, are continuous mappings, it follows from (4.8)
and (4.34) that

hi(z}) = Pe,(q) = Pc,(9:i(x741) — miQi(uj, vi))(i=1,...,N = 1),
hn(zy) = Pe, () = Pr. (gn(77) — v Qn (uy, vy))-

Now Lemma 4.1, guarantees that (x7,...,x%,u],...,ul, v}, ..., 08) I8
a solution set of the system (3.1). O
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