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GENERALIZED WAVELETS AND THE GENERALIZED

WAVELET TRANSFORM ON Rd FOR THE

HECKMAN-OPDAM THEORY

Amina Hassini, Rayaane Maalaoui, and Khalifa Trimèche

Abstract. By using the Heckman-Opdam theory on Rd given in
[20], we define and study in this paper, the generalized wavelets on
Rd and the generalized wavelet transform on Rd, and we establish
their properties. Next, we prove for the generalized wavelet trans-
form Plancherel and inversion formulas.

1. Introduction

Fourier analysis is one of the most important tools used by math-
ematicians and physicists. Besides, in the nineteenth century, Fourier
analysis was the only technique for the decomposition of a signal and its
reconstruction without loss of information. Unfortunately, it provides a
frequency analysis but does not allow the temporal localization of abrupt
changes.

A procedure for analyzing a frequency that depends on the time,
called continuous wavelet transform, was discovered by the Physicist
George Zweig in 1975 while studying the reaction of the ear to sound.
Notable contribution to the continuous wavelet transform studies can be
attributed to Pierre Goupillaud, Grossmann and Morlet’s formulation of
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what this transform is now known (see [5][6]). The basic idea is to re-
place in usual Fourier transform, the function analyzed by the product
of this function by a regular function, called a wavelet (see [11]). If we
denote by g this wavelet on Rd of L2-norm with respect to the Lebesgue
measure, equal to 1, for a scale a > 0 and position b ∈ Rd, the contin-
uous wavelet transform for a function f , is expressed by the following
integral (see [11]):

Φg(f)(a, b) =

∫
Rd

f(x)ga,b(x)dx, (a, b) ∈ ]0,+∞[×Rd,

where ga,b is the wavelet defined by

ga,b(x) = Tbga(x), x ∈ Rd,

with ga the function given by

ga(x) =
1

ad
g(
x

a
).

It satisfies
F(ga)(λ) = F(g)(aλ), λ ∈ Rd,

where F is the classical Fourier transform on Rd and Tb, b ∈ Rd, the
classical translation operator defined by

Tbg(x) = g(b− x), x ∈ Rd.

To recover the original signal f(x), the inverse of the continuous wavelet
transform Φg can be exploited:

f(x) =
1

Cg

∫ +∞

0

(∫
Rd

Φg(f)(a, b)ga,b(x)dx

)
da

a
, x ∈ Rd,

where Cg is a constant given for almost all λ ∈ Rd, by

Cg =

∫ +∞

0

|F(g)(aλ)|2da
a
,

and satisfies
0 < Cg < +∞.

One of the aims of the continuous wavelet transform, is to provide
an easily interpretable visual representation of signal. Moreover, this
transform can be applied to wide scientific research areas ranging from
signal analysis in geophysics and acoustics, to quantum theory and pure
Mathematics (see [1][11]).

Next, the theory of wavelets and continuous wavelet transform has
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been extended to the harmonic analysis associated with the Dunkl op-
erators on Rd (see [7][9][15]) and on hypergroups, in particular to the
Chébli-Trimèche hypergroups (see [2][14]).

As nowadays the harmonic analysis associated to the Cherednik op-
erators and the Heckman-Opdam theory has known remarkable devel-
opment, it is naturel question to ask whether there exists the equivalent
of the theory of wavelets and continuous wavelet transform relating to
this harmonic analysis.

In this paper, we study generalized wavelets and generalized contin-
uous wavelet transform associated to the Heckman-Opdam theory on
W -invariant functions on Rd. To achieve this, we consider the Chered-
nik operators Tj, j = 1, 2, ..., d, on Rd associated to a root system R, a
reflection group W and a non negative multiplicity function k. Thanks
to these operators, Heckman and Opdam have developed a theory gen-
eralizing the harmonic analysis on symmetric spaces (see [8][12]).
Next, we introduce the Heckman-Opdam hypergeometric function Fλ, λ ∈
Cd, given by

∀ x ∈ Rd, Fλ(x) =
1

|W |
∑
w∈W

Gλ(wx),

where Gλ, λ ∈ Cd, is the unique solution of the differential-difference
system {

TjGλ(x) = iλjGλ(x), j = 1, 2, ..., d, x ∈ Rd,
Gλ(0) = 1.

By using the function Fλ, we define the hypergeometric Fourier trans-
form HW for regular W -invariant function f on Rd by

HW (f)(λ) =

∫
Rd

f(x)F−λ(x)Ak(x)dx, λ ∈ Rd,

where Ak is a weight function, and the hypergeometric translation op-
erator T Wx , x ∈ Rd, by

HW (T Wx (f))(λ) = Fλ(x)HW (f)(λ), λ ∈ Rd.

We recall the main results of the harmonic analysis associated to the
Heckman-Opdam theory on W -invariant functions (see [20]). With the
aid of these results, we define and study the generalized wavelet trans-
form Φg(f) given for a regular W -invariant function f on Rd by

Φg(f)(a, b) =

∫
Rd

f(x)ga,b(x)Ak(x)dx, (a, b) ∈ ]0,+∞[×Rd,
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where ga,b is the generalized wavelet defined, for a > 0 and b ∈ Rd, by

ga,b(x) = T Wb ga(x), x ∈ Rd,

with ga the function given by

HW (ga)(λ) = HW (g)(aλ), λ ∈ Rd.

Next, we prove for the transform Φg Plancherel and inversion formulas.

2. The Cherednik operators and their eigenfunctions
(see [12][13])

We consider Rd with the standard basis {ei, i = 1, 2, ..., d} and the
inner product 〈., .〉 for which this basis is orthonormal. We extend this
inner product to a complex bilinear form on Cd.

2.1. The root system, the multiplicity function and the Chered-
nik operators.

Let α ∈ Rd\{0} and α̌ =
2

‖α‖2
α. We denote by

rα(x) = x− 〈α̌, x〉α, x ∈ Rd,

the reflection in the hyperplan Hα ⊂ Rd orthogonal to α.
A finite set R ⊂ Rd\{0} is called a root system if rαR = R, for all

α ∈ R. For a given root system R the reflections rα, α ∈ R, generate
a finite group W ⊂ O(d), called the reflection group associated with R.
For a given β ∈ Rd\ ∪α∈RHα, we fix the positive subsystem R+ = {α ∈
R, 〈α, β〉 > 0}, then for each α ∈ R either α ∈ R+ or −α ∈ R+. We
denote by R0

+ the set of positive indivisible roots. Let

a+ = {x ∈ Rd, ∀ α ∈ R, 〈α, x〉 > 0}

be the positive Weyl chamber. We denote by a+ its closure. Let also
Rd
reg = Rd\∪α∈RHα be the set of regular elements in Rd.

A function k : R → [0,+∞[ on the root system R is called a multi-
plicity function if it is invariant under the action of the reflection group
W . We introduce the index

γ = γ(R) =
∑
α∈R+

k(α). (2.1)
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Moreover, let Ak be the weight function

∀ x ∈ Rd, Ak(x) =
∏
α∈R+

|2 sinh〈α
2
, x〉|2k(α),

which is W -invariant.
The Cherednik operators Tj, j = 1, 2, ..., d, on Rd associated with the

reflection group W and the multiplicity function k, are defined for f of
class C1 on Rd and x ∈ Rd

reg by

Tjf(x) =
∂

∂xj
f(x) +

∑
α∈R+

k(α)αj

1− e−〈α,x〉
{f(x)− f(rαx)} − ρjf(x),

where

ρj =
1

2

∑
α∈R+

k(α)αj, and αj = 〈α, ej〉.

In the case k(α) = 0, for all α ∈ R+, the operators Tj, j = 1, 2, ...d,
reduce to the corresponding partial derivatives. We suppose in the fol-
lowing that k 6= 0.

The Cherednik operators form a commutative system of differential-
difference operators.

For f of class C1 on Rd with compact support and g of class C1 on
Rd, we have for j = 1, 2, .., d:∫

Rd

Tjf(x)g(x)Ak(x)dx = −
∫
Rd

f(x)(Tj + Sj)g(x)Ak(x)dx,

with

∀ x ∈ Rd, Sjg(x) =
∑
α∈R+

k(α)αjg(rαx).

(See [16] p.302-303).

Remark 2.1. The Dunkl operators Tj, j = 1, 2, .., d, associated to the
root system R, the reflection group W and the multiplicity function k
are defined, for f of class C1 on Rd and x ∈ Rd

reg, by

Tjf(x) =
∂

∂xj
f(x) +

∑
α∈R+

k(α)αj

〈α, x〉
{f(x)− f(rαx)}.

(See [7][15]).
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2.2. The Opdam-Cherednik kernel and the Heckman-Opdam
hypergeometric function (see [12][13][16][17][20]).

We denote by Gλ, λ ∈ Cd, the eigenfunction of the operators Tj, j =
1, 2, .., d. It is the unique analytic function on Rd which satisfies the
differential-difference system{

TjGλ(x) = iλjGλ(x), j = 1, 2, .., d, x ∈ Rd,
Gλ(0) = 1.

(2.2)

It is called the Opdam-Cherednik kernel.
We consider the function Fλ defined by

∀ x ∈ Rd, Fλ(x) =
1

|W |
∑
w∈W

Gλ(wx). (2.3)

This function is the unique analytic function on Rd, which satisfies the
differential system{

p(T )Fλ(x) = p(iλ)Fλ(x), x ∈ Rd,
Fλ(0) = 1,

for all W -invariant polynomials p on Cd and p(T ) = p(T1, T2, ..., Td).
The function Fλ(x) called the Heckman-Opdam hypergeometric func-

tion, it is W -invariant both in λ and x.
The functions Gλ and Fλ possess the following properties

i) For all λ ∈ Cd, the functions x → Gλ(x) and x → Fλ(x) are of
class C∞ on Rd.

ii) For all x ∈ Rd, the functions λ→ Gλ(x) and λ→ Fλ(x) are entire
on Cd.

iii) For all x ∈ Rd and λ ∈ Cd, we have

Gλ(x) = G−λ̄(x) and Fλ(x) = F−λ̄(x). (2.4)

iv) For all x ∈ Rd and λ ∈ Rd, we have

|Gλ(x)| ≤ |W |1/2 and |Fλ(x)| ≤ |W |1/2 . (2.5)

v) Let p and q be polynomials of degree m and n. Then, there exists
a positive constant M such that for all λ ∈ Cd and x ∈ Rd, we
have

|p( ∂
∂λ

)q(
∂

∂x
)Gλ(x)| ≤M(1 + ‖x‖)m(1 + ‖λ‖)nF0(x)e−maxw∈W Im〈wλ,x〉.

(2.6)
The same inequality is also true for the function Fλ(x).
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vi) The function F0(x) satisfies the estimate

∀ x ∈ a+, F0(x) � e−〈ρ,x〉
∏
a∈R0

+

(1 + 〈α, x〉).

vii) The function Gλ(x), λ ∈ Cd, admits the following Laplace type
representation

∀ x ∈ Rd, Gλ(x) = 〈Kx, e
i〈λ,.〉〉, (2.7)

whereKx is a some distribution on Rd with support in Γ = conv{wx
,w ∈ W} (the convex hull for the orbit of x under W ).(See [16]
p.306).

viii) From (2.3), (2.6) we deduce that the function Fλ(x), λ ∈ Cd, pos-
sesses the Laplace type representation

∀ x ∈ Rd, Fλ(x) = 〈KW
x , e

i〈λ,.〉〉, (2.8)

where KW
x is the distribution on Rd with support in Γ, given by

KW
x =

1

|W |
∑
w∈R+

Kwx . (2.9)

Remark 2.2. The functions Gλ(x) and Fλ(x) corresponding to the
Dunkl operators Tj, j = 1, 2, .., d, are denoted respectively K(x, λ) and
JW (x, λ) and called respectively the Dunkl kernel and the generalized
Bessel function. (See [7]).

Example 2.1. For d = 1 and W = Z2, the root system is R =
{−2α,−α, α, 2α} with α = 2. Here R+ = {α, 2α}. We consider the
multiplicity function k. We put k1 = k(α) + k(2α), k2 = k(2α), and
ρ = k(α) + 2k(2α) = k1 + 2k2.
The Cherednik operator is the following

T1f(x) =
d

dx
f(x) +

(
2k(α)

1− e−2x
+

4k(2α)

1− e−4x

)
(f(x)− f(−x))− ρf(x),

which can also be written in the form

T1f(x) =
d

dx
f(x) + (k1 coth(x) + k2 tanh(x)) (f(x)− f(−x))− ρf(−x).

The Opdam-Cherednik kernel is given by

∀x ∈ R,∀λ ∈ C, Gλ(x) = ϕ
(a,b)
λ (x) +

1

iλ− ρ
d

dx
ϕ

(a,b)
λ (x),
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where ϕ
(a,b)
λ (x) is the Jacobi function (see[10]), with a = k1 − 1

2
and

b = k2 − 1
2
.

The Heckman-Opdam hypergeometric function has the form

∀x ∈ R,∀λ ∈ C, Fλ(x) = ϕ
(a,b)
λ (x).

(See [4] p.164-165 and 167.)

Example 2.2.
1. The root system of type B2 on R2 can be identified with the set R

given by

R = {±e1,±e2} ∪ {±e1 ± e2},
where {e1, e2} is the standard basis of R2.
The root system R can also be written in the form

R = {±α1,±α2,±α3,±α4},

with,

α1 = e1, α2 = e2, α3 = (e1 − e2), α4 = (e1 + e2).

We denote by R+ the set of positive roots

R+ = {α1, α2, α3, α4}.

The Weyl group W is isomorphic to the hyperoctahedral group which is
generated by permutations and sign changes of the ei, i = 1, 2.
The multiplicity function k : R → [0,+∞[ can be written in the form
k = (k1, k2), where k1 is the value on the roots α1, α2, and k2 is the value
on the roots α3, α4.
The Cherednik operators Tj, j = 1, 2, associated with the Weyl group
W and the multiplicity function k, can be written for f of class C1 on
R2 and x ∈ R2

reg in the following form

T1f(x) =
∂

∂x1

f(x) + k1
{f(x)− f(rα1x)}

1− e−〈α1,x〉

+ k2

[
f(x)− f(rα3x)

1− e−〈α3,x〉
+
f(x)− f(rα4x)

1− e−〈α4,x〉

]
− (

1

2
k1 + k2)f(x),

T2f(x) =
∂

∂x2

f(x) + k1
{f(x)− f(rα2x)}

1− e−〈α2,x〉

+ k2

[
−f(x)− f(rα3x)

1− e−〈α3,x〉
+
f(x)− f(rα4x)

1− e−〈α4,x〉

]
− 1

2
k1f(x).
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(See [18]).
2. The root system of type C2 on R2 can be identified with the set R

given by

R = {±2e1,±2e2} ∪ {±e1 ± e2},
which can also be written in the form

R = {±α1,±α2,±α3,±α4},

with,

α1 = 2e1, α2 = 2e2, α3 = (e1 − e2), α4 = (e1 + e2).

The set of positive roots is the following

R+ = {α1, α2, α3, α4}.

If we denote by W (C2) the Weyl group associated with the root system
R of type C2, then we have

W (C2) = W (B2).

We denote by k = (k1, k2) the multiplicity function of the root system
R of C2, where k1 is the value on the roots α1, α2, and k2 is the value
on the roots α3, α4. (See [18]).

Example 2.3. We consider the root system R on Rd given by

R = {±αi,±2αi, i = 1, 2, .., d}.

We denote by R+ the set of positive roots

R = {αi, 2αi, i = 1, 2, .., d}.

The Cherednik operators Tj, j = 1, 2, .., d, associated to the Weyl group
W and the multiplicity function k are defined, for f of class C1 on Rd

and x ∈ Rd
reg, by

Tjf(x) =
∂

∂xj
f(x)+

d∑
i=1

[
k(αi)

1− e−〈x,αi〉
+

2k(2αi)

1− e−2〈x,αi〉

]
αji{f(x)−f(rαi

x)}

−1

2

(
d∑
i=1

(k(αi) + 2k(2αi))

)
f(x),

with αji = 〈αi, ej〉. (See [19]).
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3. The harmonic analysis associated to the Heckman-Opdam
theory on Rd

In this section, we give the harmonic analysis associated to the Heckman-
Opdam theory (the hypergeometric Fourier transform, the hypergeomet-
ric translation operator and the hypergeometric convolution product).
We shall precise these notions needed in the following subsections.

3.1. The harmonic analysis associated to the Heckman-Opdam
theory on the space of W -invariant C∞-functions.

Notations. We denote by
- E(Rd)W the space of C∞-functions on Rd, which are W -invariant.
- D(Rd)W the space of C∞-functions on Rd, with compact support

and W -invariant.
- S(Rd)W the space ofW -invariant functions from the classical Schwartz

space S(Rd).
- S2(Rd)W the space of C∞-functions on Rd, which are W -invariant,

and such that for all `, n ∈ N,

p`,n(f) = sup
|µ|≤n
x∈Rd

(1 + ‖x‖)`(F0(x))−1|Dµf(x)| < +∞,

where

Dµ =
∂|µ|

∂xµ11 ...∂x
µd
d

, µ = (µ1, ..., µd) ∈ Nd, |µ| =
d∑
i=1

µi.

Its topology is defined by the semi-norms p`,n, `, n ∈ N.
- PWa(Cd)W , a > 0, the space of entire functions g on Cd, which are

W -invariant and satisfying

∀ m ∈ N, qm(g) = sup
λ∈Cd

(1 + ‖λ‖)me−a‖Imλ‖|g(λ)| < +∞.

The topology of PWa(Cd) is defined by the semi-norms qm,m ∈ N.
We set

PW (Cd)W = ∪a>0PWa(Cd)W .

This space is called the Paley-Wiener space. It is equipped with the
inductive limit topology.
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3.1.1. The hypergeometric Fourier transform.

The hypergeometric Fourier transformHW has been defined and stud-
ied first by E.M.Opdam in [12] on the space of W -invariant C∞-functions
on Rd.

Definition 3.1. The hypergeometric Fourier transform HW is de-
fined for f in D(Rd)W (resp. S2(Rd)W ) by

∀ λ ∈ Cd,HW (f)(λ) =

∫
Rd

f(x)F−λ(x)Ak(x)dx. (3.1)

Remark 3.1. We have also the relation

∀ λ ∈ Cd,HW (f)(λ) =

∫
Rd

f(x)Fλ(−x)Ak(x)dx. (3.2)

Proposition 3.1. For all f in D(Rd)W (resp. S2(Rd)W ) we have the
following relations

∀ λ ∈ Rd,HW (f̄)(λ) = HW (f̌)(λ), (3.3)

∀ λ ∈ Rd,HW (f)(λ) = HW (f̌)(−λ), (3.4)

where f̌ is the function defined by

∀ x ∈ Rd, f̌(x) = f(−x).

Proof. We deduce these results from relations (2.4),(3.1),(3.2). �

Theorem 3.1. (See [12][13]).
i) The hypergeometric Fourier transform HW is a topological isomor-
phism from
• D(Rd)W onto PW (Cd)W .
• S2(Rd)W onto S(Rd)W .

ii) Let f be in D(Rd)W . Then suppf ⊂ B(0, a), the closed ball of center
0 and radius a > 0, if and only if its hypergeometric Fourier transform
HW (f) belongs to PWa(Cd)W .
iii) The inverse transform (HW )−1 is given by

∀ x ∈ Rd, (HW )−1(h)(x) =

∫
Rd

h(λ)Fλ(x)CWk (λ)dλ,

where

CWk (λ) = c|ck(λ)|−2, (3.5)
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with c a positive constant chosen in such a way that CWk (−ρ) = 1, and

ck(λ) =
∏
α∈R+

Γ(〈iλ, α̌〉+ 1
2
k(α

2
))

Γ(〈iλ, α̌〉+ k(α) + 1
2
k(α

2
))
, (3.6)

with the convention that k(α
2
) = 0 if α

2
/∈ R.

Remark 3.2. The function CWk is continuous on Rd and satisfies the
estimate

∀ λ ∈ Rd, |CWk (λ)| ≤ const.(1 + ‖λ‖)s, (3.7)

for some s > 0.

3.1.2. The hypergeometric transmutation operators V W
k and tV W

k .

K.Trimèche has introduced in [16][17][20] the hypergeometric trans-
mutation operators V W

k and tV W
k . These operators are useful to define

and study, in the following subsection, the hypergeometric translation
operator.
By using the distribution KW

x given by (2.9) we define the hypergeomet-
ric transmutation operator V W

k on E(Rd)W by

∀ x ∈ Rd, V W
k (g)(x) = 〈KW

x , g〉. (3.8)

This operator is called also the trigonometric Dunkl intertwining opera-
tor. It satisfies the relation

∀ x ∈ Rd, ∀ λ ∈ Cd, V W
k (ei〈λ,.〉) = Fλ(x). (3.9)

The operator V W
k is the unique linear topological isomorphism from

E(Rd)W onto itself satisfying the transmutation relations

∀ x ∈ Rd, p(T )V W
k (g)(x) = V W

k (p(D)g)(x), g ∈ E(Rd)W ,

for all W -invariant polynomials p on Cd, p(T ) = p(T1, T2, ..., Td) and
p(D) = p(D1, D2, ..., Dd) with Dj = ∂

∂xj
, j = 1, 2, ..., d, and the condition

V W
k (g)(0) = g(0). (3.10)

The dual tV W
k of the operator V W

k is defined by the following duality
relation∫

Rd

tV W
k (f)(y)g(y)dy =

∫
Rd

V W
k (g)(x)f(x)Ak(x)dx, (3.11)

with f in D(Rd)W (resp. S2(Rd)W ) and g in E(Rd)W .
The operator tV W

k is a linear topological isomorphism from
- D(Rd)W onto itself
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- S2(Rd)W onto S(Rd)W , satisfying the transmutation relations

∀ y ∈ Rd, tV W
k (p(T )f)(y) = p(Dρ)

tV W
k (f)(y), f ∈ D(Rd)W (resp.S2(Rd)W ),

for all W -invariant polynomials p on Cd, p(T ) = p(T1, T2, .., Td), and

p(Dρ) = p(D1,ρ1 , D2,ρ2 , .., Dd,ρd) with Dj,ρj =
∂

∂xj
− 2ρj, j = 1, 2, ..., d.

Remark 3.3. By applying the relation (3.11) with the function g(y) =
e−i〈λ,y〉, λ ∈ Rd, we deduce from the relations (3.9),(3.1) that the opera-
tor tV W

k satisfies for f in D(Rd)W (resp. S2(Rd)W ), the following relation

∀ λ ∈ Rd, Fo tVk(f)(λ) = HW (f)(λ), (3.12)

where F is the classical Fourier transform on Rd.

3.1.3. The hypergeometric translation operator T Wx and its dual tT Wx
on the space of W -invariant C∞-functions.

By using the hypergeometric transmutation operators V W
k and tV W

k ,
K.Trimèche has defined and studied in [17][20], the hypergeometric trans-
lation operator T Wx , x ∈ Rd and its dual tT Wx . We give in this sub-
section the properties of these operators on the space of W -invariant
C∞-functions.

Definition 3.2. We define the hypergeometric translation operator
T Wx , x ∈ Rd, on E(Rd)W by

∀ y ∈ Rd, T Wx (f)(y) = (V W
k )x(V

W
k )y[(V

W
k )−1(f)(x+ y)]. (3.13)

Proposition 3.2. The operator T Wx , x ∈ Rd, satisfies the following
properties

i) For all x ∈ Rd, the operator T Wx is continuous from E(Rd)W into itself.
ii) For all f in E(Rd)W and x, y ∈ Rd, we have

T Wx (f)(0) = f(x) and T Wx (f)(y) = T Wy (f)(x). (3.14)

iii) For all x, y ∈ Rd and λ ∈ Cd, we have the product formula

T Wx (Fλ)(y) = Fλ(x).Fλ(y), (3.15)

where Fλ is the Heckman-Opdam hypergeometric function given by
(2.3).
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Proof. i) We deduce the result from (3.13) and the continuity of the
operator V W

k from E(Rd)W into itself.
ii) The relations (3.13),(3.10) give the results.
iii) We deduce formula (3.15) from the relations (3.13),(3.9).’ �

Definition 3.3. We define the hypergeometric translation operator
dual tT Wx , x ∈ Rd, on D(Rd)W ( resp. S2(Rd)W ) by

∀y ∈ Rd, tT Wx (f)(y) = (V W
k )x(

tV W
k )−1

y [( tV W
k (f))(y − x)]. (3.16)

Proposition 3.3. The operator tT Wx , x ∈ Rd possesses the following
properties
i) For all x ∈ Rd, the operator tT Wx is continuous from D(Rd)W (resp.
S2(Rd)W ) into itself.
ii) For all f in D(Rd)W (resp. S2(Rd)W ) and x, y ∈ Rd, we have

tT Wx (f)(y) = tT W−y (f)(−x). (3.17)

iii) For all f in D(Rd)W (resp. S2(Rd)W ) and h in E(Rd)W , we have∫
Rd

tT Wx (f)(y)h(y)Ak(y)dy =

∫
Rd

f(y)T Wx (h)(y)Ak(y)dy. (3.18)

iv) For all f in D(Rd)W (resp. S2(Rd)W ) and x ∈ Rd, we have

∀λ ∈ Cd, HW ( tT Wx (f))(λ) = F−λ(x)HW (f)(λ). (3.19)

v) For all f in D(Rd)W (resp. S2(Rd)W ) and x, y ∈ Rd, we have

tT Wx (f)(y) =

∫
Rd

F−λ(x)Fλ(y)HW (f)(λ)CWk (λ)dλ. (3.20)

vi) For all f in D(Rd)W with support in the closed ball B(0, a) of center
0 and radius a > 0, we have

supp tT Wx (f) ⊂ B(0, a+ ||x||). (3.21)

Proof. i) We deduce the result from (3.16) and the fact that the op-
erator tV W

k is a topological isomorphism from D(Rd)W into itself (resp.
from S2(Rd)W into S(Rd)W ).
ii) The relation (3.16) give the result.
iii) We deduce (3.18) from the relations (3.16),(3.13) and Proposition
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3.5 of [17].
iv) From the relations (3.1),(3.18),(3.15), we have

∀λ ∈ Cd, HW ( tT Wx (f))(λ) =

∫
Rd

tT Wx (f)(y)F−λ(y)Ak(y)dy,

=

∫
Rd

f(y)T Wx (F−λ)(y)Ak(y)dy,

= F−λ(x)

∫
Rd

f(y)F−λ(y)Ak(y)dy,

thus,

∀λ ∈ Cd, HW ( tT Wx (f))(λ) = F−λ(x)HW (f)(λ).

v) We deduce (3.20) from (3.19) and Theorem 3.1 iii).
vi) We obtain (3.21) from the relations (3.19),(2.5),(2.6) and Theorem
3.1 ii). �

3.1.4. The hypergeometric convolution product.

In this subsection, we define the hypergeometric convolution prod-
uct by using the hypergeometric translation operator T Wx , x ∈ Rd, and
we study its properties on the space of W -invariant C∞-functions (see
[17][20]).

Definition 3.4. The hypergeometric convolution product f ∗HW g of
the functions f, g in D(Rd)W (resp. S2(Rd)W ) is defined by

∀ x ∈ Rd, f ∗HW g(x) =

∫
Rd

T Wx (f)(−y)g(y)Ak(y)dy. (3.22)

Remark 3.4. We have

∀x ∈ Rd, f ∗HW g(x) =

∫
Rd

T Wx (f)(y)ǧ(y)Ak(y)dy. (3.23)

where ǧ is the function defined by

∀y ∈ Rd, ǧ(y) = g(−y),

then, by applying the relation (3.18), the relation (3.23) can also be
written in the form

∀x ∈ Rd, f ∗HW g(x) =

∫
Rd

f(y) tT Wx (ǧ)(y)Ak(y)dy. (3.24)
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Proposition 3.4.
i) For all f, g in D(Rd)W (resp. S2(Rd)W ), the function f ∗HW g belongs
to D(Rd)W (resp. S2(Rd)W ).
ii) For all f, g in D(Rd)W (resp. S2(Rd)W ), we have

∀ λ ∈ Rd, HW (f ∗HW g)(λ) = HW (f)(λ).HW (g)(λ). (3.25)

Proof. i) We deduce the result from the relation (3.24) and the prop-
erties of the function tTx(ǧ)(y).
ii) From the relation (3.1) we have

∀ λ ∈ Rd, HW (f ∗HW g)(λ) =

∫
Rd

f ∗HW g(x)F−λ(x)Ak(x)dx.

By using the relations (3.24),(3.17) and Fubini’s theorem, we obtain
∀ λ ∈ Rd,

HW (f ∗HW g)(λ) =

∫
Rd

f(y)

[∫
Rd

tT−y(g)(−x)F−λ(x)Ak(x)dx

]
Ak(y)dy.

(3.26)
But from (3.2),(3.1),(3.19),(3.4), we get∫

Rd

tT−y(ǧ)(−x)F−λ(x)Ak(x)dx = =

∫
Rd

tT−y(ǧ)(−x)Fλ(−x)Ak(x)dx,

=

∫
Rd

tT−y(ǧ)(x)Fλ(x)Ak(x)dx,

= HW ( tT−y(ǧ))(−λ),

= Fλ(−y)HW (ǧ)(−λ),

thus, ∫
Rd

tT−y(ǧ)(−x)F−λ(x)Ak(x)dx = Fλ(−y)HW (g)(λ).

We put this relation in (3.26) and we obtain

∀ λ ∈ Rd, HW (f ∗HW g)(λ) = HW (g)(λ)

∫
Rd

f(y)Fλ(−y)Ak(y)dy,

we deduce (3.25) by applying (3.2). �

Corollary 3.1.
i) The hypergeometric convolution product is commutative and associa-
tive on D(Rd)W and S2(Rd)W .
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ii) For all f, g in D(Rd)W , the function f ∗HW g belongs to D(Rd)W , and
if supp f ⊂ B(0, a), a > 0, and supp g ⊂ B(0, b), b > 0, we have

supp (f ∗HW g) ⊂ B(0, a+ b), (3.27)

where B(0, c), is the closed ball of center 0 and radius c > 0.

Proof. i) We deduce the result from Proposition 3.4 ii) and Theorem
3.1 i). ii) Proposition 3.4 ii) and Theorem 3.1 ii) imply the relation
(3.27). �

Corollary 3.2. For all f in D(Rd)W (resp. S2(Rd)W ), we have

∀x, y ∈ Rd, T Wx (f)(y) = tT Wx (f̌)(−y), (3.28)

where f̌ is the function defined by

∀z ∈ Rd, f̌(z) = f(−z).

Proof. From Corollary 3.1 i), the hypergeometric convolution product
is commutative, then we have

∀x ∈ Rd,

∫
Rd

T Wx (g)(−y)f(y)Ak(y)dy =

∫
Rd

T Wx (f)(−y)g(y)Ak(y)dy.

On the other hand, from the relation (3.24) we have

∀x ∈ Rd,

∫
Rd

T Wx (g)(−y)f(y)Ak(y)dy =

∫
Rd

tT Wx (f̌)(y)g(y)Ak(y)dy.

Thus, for all x ∈ Rd and g in D(Rd)W (resp. S2(Rd)W ), we have∫
Rd

[
T Wx (f)(−y)− tT Wx (f̌)(y)

]
g(y)Ak(y)dy = 0.

This relation implies (3.28). �

Proposition 3.5.
i) For all f in D(Rd)W (resp. S2(Rd)W ) and x ∈ Rd, we have

∀λ ∈ Cd, HW (T Wx (f))(λ) = Fλ(x)HW (f)(λ). (3.29)

ii) For all f in D(Rd)W (resp. S2(Rd)W ) and x, y ∈ Rd, we have

T Wx (f)(y) =

∫
Rd

Fλ(x)Fλ(y)HW (f)(λ)CWk (λ)dλ. (3.30)
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Proof. i) From the relations (3.2),(3.18), for all f in D(Rd)W (resp.
S2(Rd)W ) and x ∈ Rd, we have

∀λ ∈ Cd, HW (T Wx (f))(λ) =

∫
Rd

T Wx (f)(y)F̌λ(y)Ak(y)dy,

=

∫
Rd

f(y) tT Wx (F̌λ)(y)Ak(y)dy,

=

∫
Rd

f̌(y) tT Wx (F̌λ)(−y)Ak(y)dy.

By using the relations (3.28),(3.15), we obtain

∀λ ∈ Cd, HW (T Wx (f))(λ) =

∫
Rd

f̌(y)T Wx (Fλ)(y)Ak(y)dy,

= Fλ(x)

∫
Rd

f̌(y)Fλ(y)Ak(y)dy,

= Fλ(x)

∫
Rd

f(y)Fλ(−y)Ak(y)dy.

The relation (3.2) implies (3.29).
ii) We deduce (3.30) from the relation (3.29) and Theorem 3.1 iii). �

3.2. The harmonic analysis associated to the Heckman-Opdam
theory on the LpAk

(Rd)W , p = 1, 2, spaces.

3.2.1. The hypergeometric Fourier transform.

The hypergeometric Fourier transform HW has been studied by
K.Trimèche in [20] on the space L2

Ak
(Rd)W of W -invariant square in-

tegrable functions on Rd, which has permit to prove formulas and a
theorem of Plancherel.

Notations. We denote by - LpAk
(Rd)W , 1 ≤ p ≤ +∞, the space of

measurable functions f on Rd which are W -invariant and satisfying

‖f‖Ak,p =
(∫

Rd

|f(x)|pAk(x)dx
)1/p

< +∞, 1 ≤ p < +∞,

‖f‖Ak,∞ = ess sup
x∈Rd

|f(x)| < +∞.
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- LpCWk
(Rd)W , 1 ≤ p ≤ +∞, the space of measurable functions f on

Rd, which are W -invariant and satisfying

‖f‖CWk ,p =
(∫

Rd

|f(λ)|pCWk (λ)dλ
)1/p

< +∞, 1 ≤ p < +∞,

‖f‖CWk ,∞ = ess sup
λ∈Rd

|f(λ)| < +∞.

Remark 3.5.
i) The space D(Rd)W is dense in the space L2

Ak
(Rd)W .

ii) S2(Rd)W ⊂ L2
Ak

(Rd)W .

We give first the following relations relating to the hypergeometric
Fourier transform on D(Rd)W (resp. S2(Rd)W ).

Proposition 3.6. For all f, g in D(Rd)W (resp. S2(Rd)W ), we have∫
Rd

f(y)g(y)Ak(y)dy =

∫
Rd

HW (f)(λ)HW (g)(λ)CWk (λ)dλ, (3.31)

and
‖f‖Ak,2 = ‖HW (f)‖CWk ,2. (3.32)

Proof. From the relation (3.25) and Theorem 3.1 iii), we have

∀x ∈ Rd, f ∗HW g(x) =

∫
Rd

Fλ(x)HW (f)(λ)HW (g)(λ)CWk (λ)dλ.

The relations (3.22),(3.3) permit to write this relation in the following
form

∀x ∈ Rd,

∫
Rd

T Wx (f)(y)ǧ(y)Ak(y)dy =

∫
Rd

Fλ(x)HW (f)(λ)HW (ǧ)(λ)CWk (λ)dλ.

We obtain (3.31) by changing ǧ by g in the two members, by taking
x = 0, and by using the relations

∀y ∈ Rd, T W0 (f)(y) = f(y), and ∀λ ∈ Rd, Fλ(0) = 1.

�

Definition 3.5. The hypergeometric Fourier transform HW is de-
fined for f in L1

Ak
(Rd)W by

∀ λ ∈ Rd,HW (f)(λ) =

∫
Rd

f(x)F−λ(x)Ak(x)dx.
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Lemma 3.1. Let H be a Hilbert space, V a subspace of H dense in
H, and U : V 7−→ H a linear continuous application when we equip V
with the norm induced by H. Then U extends to a linear continuous
application from H into itself. If U is an isometry it extends to an
isometry from H into itself. By taking H = L2

Ak
(Rd)W , V = S2(Rd)W

and U = HW and by using Corollary 3.3 and Lemma 3.1, we obtain the
following Theorem:

Theorem 3.2.
i) (Plancherel formulas). For all f, g in L2

Ak
(Rd)W we have∫

Rd

f(x)g(x)Ak(x)dx =

∫
Rd

HW (f)(λ)HW (g)(λ)CWk (λ)dλ. (3.33)

and
||f ||Ak,2 = ||HW (f)||CWk ,2. (3.34)

ii) (Plancherel theorem). The hypergeometric Fourier transform HW ex-
tends uniquely to an isometric isomorphism from L2

Ak
(Rd)W onto L2

CWk
(Rd)W .

Corollary 3.3. For all f in L2
Ak

(Rd)W such that HW (f) belongs to

L1
CWk

(Rd)W , we have the following inversion formula

f(x) =

∫
Rd

HW (f)(λ)Fλ(x)CWk (λ)dλ, a.e. x ∈ Rd . (3.35)

Remark 3.6. The inversion formula (3.35) is also true for all function
f in L1

Ak
(Rd)W bounded such that HW (f) belongs to L1

CWk
(Rd)W .

3.2.2. The hypergeometric translation operator.

Definition 3.6. The hypergeometric translation operator T Wx , x ∈
Rd, is defined on L2

Ak
(Rd)W by

HW (T Wx (f))(λ) = Fλ(x)HW (f)(λ), λ ∈ Rd. (3.36)

Remark 3.7. Note that this definition makes sense because the hy-
pergeometric Fourier transform is, from Theorem 3.2 ii), an isomorphism
from L2

Ak
(Rd)W onto L2

CWk
(Rd)W , and from (2.5), for all λ ∈ Rd, the func-

tion Fλ(x) is bounded.

Proposition 3.7.
i) For all f in L2

Ak
(Rd)W , we have

‖T Wx (f)‖Ak,2 ≤ |W |1/2‖f‖Ak,2. (3.37)



The generalized wavelet transform on Rd for the Heckman-Opdam theory 255

ii) For all f in L2
Ak

(Rd)W , we have

T Wx (f)(y) = lim
n→+∞

∫
B(0,n)

Fλ(x)Fλ(y)HW (f)(λ)CWk (λ)dλ, (3.38)

where B(0, n) is the closed ball of center 0 and radius n. The limit is in
L2
Ak

(Rd)W .

iii) For all f in L2
Ak

(Rd)W such that HW (f) belongs to L1
CWk

(Rd)W and

x ∈ Rd, we have

T Wx (f)(y) =

∫
Rd

Fλ(x)Fλ(y)HW (f)(λ)CWk (λ)dλ, a.e. y ∈ Rd. (3.39)

iv) For all f in L2
Ak

(Rd)W , we have

T Wx (f)(y) = T Wx (f)(y), x, y ∈ Rd, (3.40)

and
T Wx (f)(y) = T Wy (f)(x), x, y ∈ Rd. (3.41)

Proof. i) We obtain (3.37) from (3.36), Plancherel formula (3.34) and
(2.5).
ii) We deduce the result from (3.36) and Theorem 3.2 ii).
iii) The relation (3.36) and the inversion formula (3.35) imply the result.
iv) For the functions f of S2(Rd)W the relations (3.30),(3.3),(3.4) imply
the relations (3.40),(3.41), we deduce these relations for the functions of
L2
Ak

(Rd)W from the density of S2(Rd)W in L2
Ak

(Rd)W and the relation
(3.38). �

Proposition 3.8. For all f in L2
Ak

(Rd)W , the mapping x→ T Wx (f)

is continuous from Rd into L2
Ak

(Rd)W .

Proof. Let x0 ∈ Rd. By using Plancherel formula (3.34) and the
relation (3.36), we obtain

‖T Wx (f)− T Wx0 (f)‖2
Ak,2

= ‖HW (T Wx (f))−HW (T Wx0 (f))‖2
CWk
,

=

∫
Rd

|Fλ(x)− Fλ(x0)|2|HW (f)(y)|2CWk (λ)dλ.

From the relation (2.5) and the fact that for all λ ∈ Rd, the function
x → Fλ(x) is continuous on Rd, the dominated convergence theorem
implies

lim
x→x0

‖T Wx (f)− T Wx0 (f)‖Ak,2 = 0.
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�

3.2.3. The hypergeometric convolution product.

In this subsection, we define the hypergeometric convolution product
by using the hypergeometric translation operator T Wx , x ∈ Rd, and we
study its properties on the space L2

Ak
(Rd)W (see [17][20]).

Proposition 3.9. Let f be in L2
Ak

(Rd)W and g in L1
Ak

(Rd)W , then

the function f ∗HW g defined all most everywhere on Rd by

f ∗HW g(x) =

∫
Rd

T Wx (f)(−y)g(y)Ak(y)dy, (3.42)

belongs to L2
Ak

(Rd)W , and we have

‖f ∗HW g‖Ak,2 ≤ |W |1/2‖f‖Ak,2‖g‖Ak,1, (3.43)

and
HW (f ∗HW g) = HW (f).HW (g). (3.44)

Proof. Let f, g, ϕ in D(Rd)W . From (3.14) and Fubini’s theorem, we
have ∫

Rd

f ∗HW g(x)ϕ(x)Ak(x)dx

=

∫
Rd

g(y)

(∫
Rd

T Wx (f)(−y)ϕ(x)Ak(x)dx

)
Ak(y)dy,

=

∫
Rd

ǧ(y)

(∫
Rd

T Wy (f)(x)ϕ(x)Ak(x)dx

)
Ak(y)dy.

By using Hölder’s inequality and (3.37), we obtain∣∣∣∣∫
Rd

f ∗HW g(x)ϕ(x)Ak(x)dx

∣∣∣∣ ≤ |W |1/2‖f‖Ak,2‖g‖Ak,1‖ϕ‖Ak,2. (3.45)

As the relation (3.45) remain true for all functions g in L1
Ak

(Rd)W and

f, ϕ in L2
Ak

(Rd)W , thus we obtain (3.43). �

Proposition 3.10. Let f and g be in L2
Ak

(Rd)W . Then the function

f ∗HW g defined on Rd by

f ∗HW g(x) =

∫
Rd

T Wx (f)(−y)g(y)Ak(y)dy,
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is continuous on Rd, tends to zero at the infinity and we have

sup
x∈Rd

|f ∗HW g(x)| ≤ |W |1/2‖f‖Ak,2‖g‖Ak,2. (3.46)

Proof. Let {fn}n∈N and {gn}n∈N be two sequences in D(Rd)W which
converge respectively to f and g in L2

Ak
(Rd)W . By using the fact that the

operator T Wx , x ∈ Rd is continuous from D(Rd)W into itself, we deduce
that the sequence {fn ∗HW gn}n∈N which belongs to D(Rd)W , converges
to {f ∗HW g} uniformly on Rd. Then, the function f ∗HW g is continuous
on Rd and tends to zero at the infinity. The Hölder’s inequality and
(3.37) imply the relation (3.46). �

Proposition 3.11. Let f and g be in L2
Ak

(Rd)W , then the function

f ∗HW g belongs to L2
Ak

(Rd)W if and only if the function HW (f).HW (g)

is in L2
Ak

(Rd)W , and we have HW (f ∗HW g) = HW (f).HW (g), in the
L2-case.

To prove this Proposition, we need the following Lemma.

Lemma 3.2. For all f, g in L2
Ak

(Rd)W and all ψ in S2(Rd)W , we have
the following identity∫
Rd

f∗HW g(x)(HW )−1(ψ)(x)Ak(x)dx =

∫
Rd

HW (f)(λ)HW (g)(λ)ψ(λ)CWk (λ)dλ.

(3.47)

Proof. We denote by Z1(f) and Z2(f) respectively the first and the
second member of the relation (3.47). From Theorem 3.2 and Proposi-
tion 3.9, we see that Z1(f) = Z2(f) for all f in (L1

Ak
∩ L2

Ak
)(Rd)W .

On the other hand, let fn be in (L1
Ak
∩ L2

Ak
)(Rd)W such that

lim
n→+∞

||fn − f ||Ak,2 = 0. (3.48)

By using Hölder’s inequality, Theorem 3.2 and Proposition 3.8 we obtain

|Z1(fn)− Z1(f)| ≤ |W |
1
2 ||fn − f ||Ak,2||g||Ak,2||(HW )−1(ψ)||Ak,∞,

and

|Z2(fn)− Z2(f)| ≤ ||fn − f ||Ak,2||g||Ak,2||ψ||Ak,∞.

Then, from (3.48) we get

lim
n→+∞

Z1(fn) = Z1(f),
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and

lim
n→+∞

Z2(fn) = Z2(f).

We deduce the result from the density of (L1
Ak
∩L2
Ak

)(Rd)W in L2
Ak

(Rd)W .
�

Proof of Proposition 3.11
Suppose that the function f ∗HW g is in L2

Ak
(Rd)W . By Lemma 3.2 and

Theorem 3.2, for all ψ in S2(Rd)W , we have∫
Rd

HW (f)(λ)HW (g)(λ)ψ(λ)CWk (λ)dλ =

∫
Rd

HW (f∗HW g)(λ)ψ(λ)CWk (λ)dλ,

which shows that

HW (f)(λ)HW (g)(λ) = HW (f ∗HW g)(λ), λ ∈ Rd.

Conversely, if HW (f).HW (g) belongs to L2
Ak

(Rd)W . By Lemma 3.2 and

Theorem 3.2, for all ψ in S2(Rd)W , we have∫
Rd

f ∗HW g(x)(HW )−1(ψ)(x)Ak(x)dx

=

∫
Rd

(HW )−1(HW (f).HW (g))(x)(HW )−1(ψ)(x)Ak(x)dx,

which implies that

f ∗HW g(x) = (HW )−1(HW (f).HW (g))(x), x ∈ Rd.

This achieves the proof of Proposition 3.11.

Corollary 3.4. For all f, g in L2
Ak

(Rd)W , we have∫
Rd

|f ∗HW g|2Ak(x)dx =

∫
Rd

|HW (f)(λ)|2|HW (g)(λ)|2CWk (λ)dλ, (3.49)

where both sides are finite or infinite.

Proof.
- When f ∗HW g is in L2

Ak
(Rd)W , we deduce (3.49) from Proposition 3.11

and the Plancherel formula (3.34).
- For the other case the sides of (3.49) are infinite. �
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4. Generalized wavelets and the generalized wavelet trans-
form on Rd

4.1. Generalized wavelets on Rd.

By using the harmonic analysis associated to the Heckman-Opdam
theory given in the previous section, we define in this subsection, the
generalized wavelets on Rd and we study their properties on the space
of W -invariant C∞-functions and on the space L2

Ak
(Rd)W .

Definition 4.1. We say that a function g in L2
Ak

(Rd)W is a general-

ized wavelet on Rd, if there exists a constant Cg such that
i) 0 < Cg < +∞.
ii) For almost all λ ∈ Rd, we have

Cg =

∫ +∞

0

|HW (g)(aλ)|2da
a
. (4.1)

Example 4.1. Let t > 0. We consider the function g defined by

∀x ∈ Rd, g(x) = −LWk EW
t (x),

where LWk is the Heckman-Opdam Laplacian defined, for a function f
on Rd of class C2 and W -invariant, by

LWk f =
d∑
j=1

T 2
j f. (4.2)

It has the following form : For x ∈ Rd
reg,

LWk f(x) = ∆f(x) +
∑
α∈R+

k(α) coth(
〈α, x〉

2
)〈∇f(x), α〉+ ||ρ||2f(x),

where ∆ and ∇ are respectively the Laplacian and the gradient on Rd,
and EW

t , t > 0, the heat kernel given by

∀x ∈ Rd, EW
t (x) =

∫
Rd

e−t(||λ||
2+||ρ||2)Fλ(x)CWk (λ)dλ. (4.3)

By using (2.2),(2.3),(4.2),(4.3) we obtain

∀x ∈ Rd, g(x) =

∫
Rd

||λ||2e−t(||λ||2+||ρ||2)Fλ(x)CWk (λ)dλ.
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The function g belongs to S2(Rd)W , and we have

∀λ ∈ Rd, HW (g)(λ) = ||λ||2e−t(||λ||2+||ρ||2).

For λ ∈ Rd\{0}, we have

Cg =

∫ +∞

0

|HW (g)(aλ)|2da
a

= e−2t||ρ||2
∫ +∞

0

||λ||4e−2ta2||λ||2a3da,

By change of variables we obtain, for almost all λ ∈ Rd:

Cg =
e−2t||ρ||2

8t2
.

Definition 4.2. We define the function lk on ]0,+∞[ by

lk(a) = sup
λ∈Rd\{0}

|CWk (λ
a
)|

|CWk (λ)|
= sup

λ∈Rd\{0}

|ck(λ)|2

|ck(λa )|2
, (4.4)

where CWk and ck the functions given by the relations (3.5),(3.6).

Remark 4.1. When k(α) ∈ N, for all α ∈ R, the function lk has the
following form

lk(a) = sup
λ∈Rd\{0}

∏
α∈R+

k(α)∏
n=1

(〈λ, α̌〉)2 + (1
2
k(α

2
) + k(α)− n)2

( 1
a
〈λ, α̌〉)2 + (1

2
k(α

2
) + k(α)− n)2

.

It satisfies the estimates
i) If a ∈ [1,+∞[

0 < lk(a) ≤ a−2γ,

with γ defined by the relation (2.1).
ii) If a ∈]0, 1[

0 < lk(a) ≤
∏
α∈R+

k(α).

Theorem 4.1. Let a > 0 and g a generalized wavelet on Rd in
L2
Ak

(Rd)W . Then,

i) The function λ −→ HW (g)(aλ) belongs to L2
Ak

(Rd)W , and we have∫
Rd

|HW (g)(aλ)|2CWk (λ)dλ ≤ lk(a)

ad
||g||2Ak,2

, (4.5)
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where lk is the function given by the relation (4.4).
ii) There exists a function ga in L2

Ak
(Rd)W such that

HW (ga)(λ) = HW (g)(aλ), λ ∈ Rd, (4.6)

and we have

||ga||2Ak,2
≤ lk(a)

ad
||g||2Ak,2

. (4.7)

Proof.
i) By change of variables and from the relation (4.4) we obtain∫

Rd

|HW (g)(aλ)|2CWk (λ)dλ =
1

ad

∫
Rd

|HW (g)(λ)|2CWk (
λ

a
)dλ

≤ lk(a)

ad

∫
Rd

|HW (g)(λ)|2CWk (λ)dλ.

We deduce (4.5) from this relation and the Plancherel formula (3.34).
ii) The relation (4.5), Theorem 3.2.ii) and the Plancherel formula (3.34)
give the results. �

Notation. We denote by Ha the dilatation operator defined on S2(Rd)W

by
∀x ∈ Rd, Ha(f)(x) = f(ax). (4.8)

Proposition 4.1.
i) Let g be in D(Rd)W (resp. S2(Rd)W ). Then, for a > 0, the function
ga belongs to D(Rd)W (resp. S2(Rd)W ) and we have

∀x ∈ Rd, ga(x) =
1

ad
(tV W

k )−1 ◦Ha−1 ◦ tV W
k (g)(x). (4.9)

ii) Let g be in D(Rd)W with support in the closed ball B(0, R), of center
0 and radius R. Then for a > 0, the function ga belongs to D(Rd)W with
support in B(0, aR).

Proof. i) From the relations (3.12),(4.6) we obtain

∀x ∈ Rd, ga(x) = (tV W
k )−1 ◦ F−1 ◦Ha ◦ F ◦ tV W

k (g)(x), (4.10)

where F is the classical Fourier transform on Rd.
On the other hand, by using (4.8) and by making changes of variables,
we obtain

∀x ∈ Rd, F−1 ◦Ha ◦ F(f)(x) =
1

ad
Ha−1(f)(x). (4.11)
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We deduce (4.9) from (4.10),(4.11).
ii) Let g be in D(Rd)W with support in B(0, R). From Theorem 3.1.ii),
the function HW (g) belongs to PWR(Cd)W . Then

∀m ∈ N, sup
λ∈Cd

(1 + ‖λ‖)me−R‖Imλ‖|HW (g)(λ)| < +∞.

Thus, from this relation and (4.6) we obtain

∀m ∈ N, sup
λ∈Cd

(1 + ‖λ‖)me−aR‖Imλ‖|HW (g)(λ)| < +∞.

Then, we deduce the result from this relation and Theorem 3.1.ii). �

Proposition 4.2. Let g be a generalized wavelet on Rd in L2
Ak

(Rd)W .

Then, for a > 0 and b ∈ Rd, the function

ga,b(x) = T Wb ga(x), x ∈ Rd, (4.12)

is in L2
Ak

(Rd)W , and we have

Cga,b ≤ |W |Cg. (4.13)

Proof. As the function g is in L2
Ak

(Rd)W , then from the relation (4.12)

and Proposition 3.7.i), the function b −→ ga,b is in L2
Ak

(Rd)W . Thus, the
relations (3.36),(4.6) imply

HW (ga,b)(λ) = Fλ(b)HW (g)(aλ), λ ∈ Rd. (4.14)

From (4.14) and Definition 4.1, we have for almost λ ∈ Rd:

Cga,b = |Fλ(b)|2
∫ +∞

0

|HW (g)(a0λ)|2da0

a0

. (4.15)

We deduce (4.13) from the relations (4.15),(4.1),(2.5). �

Proposition 4.3. Let g be in D(Rd)W with support in the closed
ball B(0, R), of center 0 and radius R > 0. Then, for a > 0 and b ∈ Rd,
the function ga,b belongs to D(Rd)W with support in B(0, aR + ||b||).

Proof. As the function g belongs to D(Rd)W then, from (4.12),(4.14),
we obtain

∀λ ∈ Cd, HW (ga,b)(λ) = Fλ(b)HW (ga)(λ). (4.16)

But from (2.4),(2.5) there exists a positive constant M such that for all
λ ∈ Cd and b ∈ Rd we have

|Fλ(b)| ≤MF0(b)e||b||||Imλ||, (4.17)
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and

|F0(b)| ≤ |W |
1
2 . (4.18)

As from Proposition 4.1.ii), the function ga is in D(Rd)W , then, from
Theorem 3.1.i) and the relations (4.16),(4.17),(4.18), the functionHW (ga,b)
belongs to PW (Cd)W and then we have

∀m ∈ N, sup
λ∈Cd

(1 + ‖λ‖)me−(aR+‖b‖)‖Imλ‖|HW (ga,b)(λ)| < +∞.

This relation and Theorem 3.1.ii) imply that the function ga,b is in
D(Rd)W , and

supp ga,b ⊂ B(0, aR + ||b||).
�

Corollary 4.1. Let g be a generalized wavelet on Rd in D(Rd)W

(resp. S2(Rd)W ). Then, for a > 0 and b ∈ Rd, the function ga,b belongs
to D(Rd)W (resp. S2(Rd)W ).

Proof. We deduce the result from Propositions 4.1 and 4.2. �

Proposition 4.4. Let g be a generalized wavelet on Rd in L2
Ak

(Rd)W

such that HW (g) belongs to L1
CWk

(Rd)W . Then, the mapping (a, b) −→
ga,b is continuous from ]0,+∞[×Rd into L2

Ak
(Rd)W .

Proof. From the density of D(Rd)W in L2
Ak

(Rd)W , it suffices to con-

sider the case where g is in D(Rd)W with support in the closed ball
B(0, R), of center 0 and radius R > 0. Let (a0, b0) ∈]0,+∞[×Rd, from
Proposition 4.3, there exists R0 > 0 such that for 0 < a0 < a and
b0, b ∈ Rd such that

|a− a0| < 1, ||b− b0|| < 1, we have supp ga,b ⊂ B(0, R0).

Then,

||ga,b−ga0,b0||2Ak,2
≤ (

∫
B(0,R0)

Ak(x)dx) esssupx∈B(0,R0)|ga,b(x)−ga0,b0(x)|2.

(4.19)
On the other hand, from (3.20),(3.28) we have

ga,b(x) =

∫
Rd

Fλ(x)Fλ(b)HW (g)(aλ)CWk (λ)dλ, a.e. x ∈ Rd.
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By using this relation and (2.5), we obtain for x ∈ Rd:

|ga,b(x)−ga0,b0(x)| ≤ |W |
1
2

∫
Rd

|Fλ(b)HW (g)(aλ)−Fλ(b0)HW (g)(a0λ)|CWk (λ)dλ.

(4.20)
As g is in D(Rd)W and the function HW (g)(λ) is in PW (Cd)W then,
there exists a positive constant c0 such that

∀Λ ∈ Rd, |HW (g)(Λ)| ≤ c0

(1 + ||Λ||)s+d+1
, (4.21)

with s the constant given by (3.7).
From the relation (4.21), we deduce that

∀λ ∈ Rd, |HW (g)(aλ)| ≤ c0

(1 + ||aλ||)s+d+1
,

and

∀λ ∈ Rd, |HW (g)(a0λ)| ≤ c0

(1 + ||a0λ||)s+d+1
.

As for 0 < a0 < a we have

∀λ ∈ Rd,
1

(1 + ||aλ||)s+d+1
<

1

(1 + ||a0λ||)s+d+1
. (4.22)

Then, from (2.5),(4.21),(4.22),(3.7), there exists a positive constant M
such that

|Fλ(b)HW (g)(aλ)− Fλ(b0)HW (g)(a0λ)|CWk (λ) ≤ 2M |W |
(1 + a0||λ||)d+1

,

with ∫
Rd

1

(1 + a0||λ||)d+1
dλ < +∞.

Thus, from the dominated convergence theorem we obtain

lim
(a,b)→(a0,b0)

∫
Rd

|Fλ(b)HW (g)(aλ)− Fλ(b0)HW (g)(a0λ)|CWk (λ)dλ = 0.

(4.23)
On the other hand, from (4.20) we have

esssupx∈B(0,R0)|ga,b(x)− ga0,b0(x)|2

≤|W |
(∫

Rd

|Fλ(b)HW (g)(aλ)− Fλ(b0)HW (g)(a0λ)|CWk (λ)dλ

)2

.
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Thus, the relation (4.23) implies that

lim
(a,b)→(a0,b0)

esssupx∈B(0,R0)|ga,b(x)− ga0,b0(x)|2 = 0.

Then, from this relation and (4.19) we obtain

lim
(a,b)→(a0,b0)

||ga,b − ga0,b0||Ak,2 = 0.

�

4.2. Generalized wavelet transform on Rd.

With the aid of the results of the previous section, we define and
study the generalized wavelet transform, we give some of its properties
and we prove for it, Plancherel and inversion formulas.

Definition 4.3. The generalized wavelet transform Φg on Rd is de-
fined for f in L2

Ak
(Rd)W by

Φg(f)(a, b) =

∫
Rd

f(x)ga,b(x)Ak(x)dx, (a, b) ∈]0,+∞[×Rd.

We can also write it in the form

Φg(f)(a, b) = f̌ ∗HW ga(b), (4.24)

where f̌ is the function defined by

f̌(x) = f(−x), x ∈ Rd.

Proposition 4.5.
i) For f in L2

Ak
(Rd)W , the function b −→ Φg(f)(a, b) is continuous on

Rd, tends to zero at infinity and we have

sup
b∈Rd

|Φg(f)(a, b)| ≤ (
lk(a)|W |

ad
)
1
2 ||f ||Ak,2||g||Ak,2.

ii) For f in L1
Ak

(Rd)W , the function b −→ Φg(f)(a, b) is defined almost

everywhere on Rd, belongs to L2
Ak

(Rd)W and we have

||Φg(f)(a, .)||Ak,2 ≤ (
lk(a)|W |

ad
)
1
2 ||f ||Ak,1||g||Ak,2. (4.25)

iii) If g is inD(Rd)W (resp. S2(Rd)W ), then for f inD(Rd)W (resp. S2(Rd)W ),
the function b −→ Φg(a, b) belongs to D(Rd)W (resp. S2(Rd)W ).
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Proof. i) As f and g are in L2
Ak

(Rd)W , then from Proposition 3.10,

the mapping b −→ Φg(f)(a, b) = f̌ ∗HW ga(b) is continuous on Rd, tends
to zero at infinity and we have

sup
b∈Rd

|Φg(f)(a, b)| ≤ |W |
1
2 ||f ||Ak,2||ga||Ak,2.

This relation and (4.7) give the relation (4.25).
ii) As f is in L1

Ak
(Rd)W and g is in L2

Ak
(Rd)W , we obtain the results from

the relation (4.24), Proposition 3.9 and the relation (4.7).
iii) We deduce the result from Proposition 4.1.ii) and Corollary 3.1 ii).
�

Proposition 4.6. Let f be in L2
Ak

(Rd)W and g in L2
Ak

(Rd)W such

thatHW (g) belongs to L1
Ak

(Rd)W . Then, the mapping (a, b) −→ Φg(f)(a, b)

is continuous on ]0,+∞[×Rd.

Proof. Let (a0, b0) ∈]0,+∞[×Rd. From Definition 4.3, for (a, b) ∈
]0,+∞[×Rd, we have

|Φg(f)(a, b)− Φg(f)(a0, b0)| ≤
∫
Rd

|f(x)||ga,b(x)− ga0,b0(x)|Ak(x)dx.

By using Hölder inequality, we obtain

|Φg(f)(a, b)− Φg(f)(a0, b0)| ≤ ||f ||Ak,2||ga,b − ga0,b0||Ak,2.

We deduce the result from Proposition 4.4. �

Theorem 4.2. (Plancherel formulas) Let g be a generalized wavelet
on Rd in L2

Ak
(Rd)W .

i) For f in L2
Ak

(Rd)W , we have

||f ||2Ak,2
=

1

Cg

∫
Rd

∫ +∞

0

|Φg(f)(a, b)|2da
a
Ak(b)db. (4.26)

ii) For all f1, f2 in L2
Ak

(Rd)W , we have∫
Rd

f1(x)f2(x)Ak(x)dx =
1

Cg

∫
Rd

∫ +∞

0

Φg(f1)(a, b)Φg(f2)(a, b)
da

a
Ak(b)db.

(4.27)
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Proof. i) From Definition 4.3 and Fubini-Tonelli’s theorem, we have

1

Cg

∫
Rd

∫ +∞

0

|Φg(f)(a, b)|2da
a
Ak(b)db

=
1

Cg

∫ +∞

0

(

∫
Rd

|f̌ ∗HW ga(b)|2Ak(b)db)
da

a
.

From Corollary 3.4, we deduce that

1

Cg

∫
Rd

∫ +∞

0

|Φg(f)(a, b)|2da
a
Ak(b)db

=
1

Cg

∫ +∞

0

(

∫
Rd

|HW (f̌)(λ)|2|HW (ga)(λ)|2CWk (λ)dλ)
da

a
.

Then, from the relation (3.4) and Fubini-Tonelli’s theorem, we get

1

Cg

∫
Rd

∫ +∞

0

|Φg(f)(a, b)|2da
a
Ak(b)db

=

∫
Rd

|HW (f)(λ)|2(
1

Cg

∫ +∞

0

|HW (ga)(−λ)|2da
a

)CWk (λ)dλ.

(4.28)

On the other hand, by using the fact that

∀x ∈ Rd, ∀λ ∈ Rd, F−λa(x) = Fλa(x),

and by applying (3.3) we obtain for almost all λ ∈ Rd:∫
Rd

|HW (ga)(−λ)|2da
a

=

∫
Rd

|HW (g)(aλ)|2da
a
.

Thus, from the relation (4.1), we have∫
Rd

|HW (ga)(−λ)|2da
a

=

∫
Rd

|HW (g)(aλ)|2da
a

= Cg. (4.29)

Then, the relation (4.26) follows from the relations (4.28),(4.29) and
Plancherel formula (3.34).
ii) We deduce the result from the i). �

Theorem 4.3. (Inversion formula) Let g be a generalized wavelet
on Rd in L2

Ak
(Rd)W . For f in L1

Ak
(Rd)W ∩ L∞Ak

(Rd)W continuous and
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such that HW (f) belongs to L1
CWk

(Rd)W , we have the following inversion

formula for the transform Φg:

f(x) =
1

Cg

∫ +∞

0

(

∫
Rd

Φg(f)(a, b)ga,b(x)Ak(b)db)
da

a
, x ∈ Rd, (4.30)

where, for each x ∈ Rd, both the inner integral and the outer integral
are absolutely convergent, but possible not the double integral.

Proof. We put

i(a, x) =

∫
Rd

Φg(f)(a, b)ga,b(x)Ak(b)db,

and

I(x) =
1

Cg

∫ +∞

0

i(a, x)
da

a
.

First, we shall prove that, for each x ∈ Rd, the integrals i(a, x) and I(x)
are absolutely convergent, and we have

I(x) =

∫
Rd

HW (f)(λ)Fλ(x)CWk (λ)dλ. (4.31)

As f is in L1
Ak

(Rd)W and ga in L2
Ak

(Rd)W , then from Proposition 4.2 and

Definition 4.3, for b ∈ Rd, we have

Φg(f)(a, b)ga,b(x) = f̌ ∗HW ga(b)T Wx (ga)(b).

Proposition 3.9 and the relation (3.37) imply that the functions b −→
f̌ ∗HW ga(b) and
b −→ T Wx (ga)(b) belong to L2

Ak
(Rd)W . Then, Hölder’s inequality shows

that the integral i(a, x) is absolutely convergent.

On the other hand, from (3.40), the Plancherel formula (3.33), Proposi-
tion 3.9 and the relations (3.36),(3.4),(3.3), we obtain
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i(a, x) =

∫
Rd

f̌ ∗HW ga(b)T Wx (ga)(b)Ak(b)db

=

∫
Rd

HW (f̌ ∗HW ga)(λ)HW (T Wx (ga))(λ)CWk (λ)dλ

=

∫
Rd

HW (f̌ ∗HW ga)(λ)Fλ(x) HW (ga)(λ)CWk (λ)dλ

=

∫
Rd

HW (f̌)(λ)HW (ga)(λ)F−λ(x)HW (ga)(λ)CWk (λ)dλ

=

∫
Rd

HW (f̌)(λ)HW (ǧa)(λ)HW (ǧa)(λ)F−λ(x)CWk (λ)dλ.

Then,

i(a, x) =

∫
Rd

HW (f)(λ)|HW (ga)(λ)|2Fλ(x)CWk (λ)dλ. (4.32)

Thus, from Fubini-Tonelli’s theorem and the relation (2.5), we get

1

Cg

∫ +∞

0

|i(a, x)|da
a

≤|W |
1
2

∫
Rd

|HW (f)(λ)|
(

1

Cg

∫ +∞

0

|HW (ga)(λ)|2da
a

)
CWk (λ)dλ.

But, from Definition 4.1, for almost all λ ∈ Rd, we have

1

Cg

∫ +∞

0

|HW (ga)(λ)|2da
a

= 1. (4.33)

Then,

1

Cg

∫ +∞

0

|i(a, x)|da
a
≤ |W |

1
2 ||HW (f)||CWk ,1 < +∞. (4.34)

This inequality implies that the integral I(x) is absolutely convergent.
We prove now the relation (4.31). From the relation (4.32), we have

I(x) =
1

Cg

∫ +∞

0

∫
Rd

HW (f)(λ)|HW (ga)(λ)|2Fλ(x)CWk (λ)dλ
da

a
.
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First, we apply Fubini-Tonelli’s theorem to the second member and we
use the relation (4.34). Next, we apply Fubini’s theorem and we obtain

I(x) =

∫
Rd

HW (f)(λ)(
1

Cg

∫ +∞

0

|HW (ga)(λ)|2da
a

)Fλ(x)CWk (λ)dλ.

We deduce the relation (4.31) from (4.33).
As the function f belongs to L1

Ak
(Rd)W ∩ L∞Ak

(Rd)W then, the inversion
formula (3.35) and Remark 3.6 imply the relation (4.30). �
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[20] K.Trimèche, The harmonic analysis associated to the Heckman-Opdam theory
and its application to a root system of type BCd., Preprint. Faculty of Sciences
of Tunis. 2015.

Amina Hassini
Department of Mathematics
Faculty of Sciences of Tunis
University of El Manar CAMPUS
Tunis 2092, Tunisia
E-mail : hassini.amina@hotmail.fr

Rayaane Maalaoui
Department of Mathematics
Faculty of Sciences of Tunis
University of El Manar CAMPUS
Tunis 2092, Tunisia
E-mail : rayaane.maalaoui@gmail.com

Khalifa Trimèche
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