DOI QR코드

DOI QR Code

Prediction of future hydrologic variables of Asia using RCP scenario and global hydrology model

RCP 시나리오 및 전지구 수문 모형을 활용한 아시아 미래 수문인자 예측

  • Kim, Dawun (Dept. of Water Resources, Graduate School of Water Resources, Sungkyunkwan Univ.) ;
  • Kim, Daeun (Dept. of Civil and Environmental Eng., Hanyang Univ.) ;
  • Kang, Seok-koo (Dept. of Civil and Environmental Eng., Hanyang Univ.) ;
  • Choi, Minha (Dept. of Water Resources, Graduate School of Water Resources, Sungkyunkwan Univ.)
  • 김다운 (성균관대학교 수자원전문대학원) ;
  • 김다은 (한양대학교 건설환경공학과) ;
  • 강석구 (한양대학교 건설환경공학과) ;
  • 최민하 (성균관대학교 수자원전문대학원)
  • Received : 2016.02.12
  • Accepted : 2016.04.08
  • Published : 2016.06.30

Abstract

According to the 4th and 5th assessment of the Intergovernmental Panel on Climate Change (IPCC), global climate has been rapidly changing because of the human activities since Industrial Revolution. The perceived changes were appeared strongly in temperature and concentration of carbon dioxide ($CO_2$). Global average temperature has increased about $0.74^{\circ}C$ over last 100 years (IPCC, 2007) and concentration of $CO_2$ is unprecedented in at least the last 800,000 years (IPCC, 2014). These phenomena influence precipitation, evapotranspiration and soil moisture which have an important role in hydrology, and that is the reason why there is a necessity to study climate change. In this study, Asia region was selected to simulate primary energy index from 1951 to 2100. To predict future climate change effect, Common Land Model (CLM) which is used for various fields across the world was employed. The forcing data was Representative Concentration Pathway (RCP) data which is the newest greenhouse gas emission scenario published in IPCC 5th assessment. Validation of net radiation ($R_n$), sensible heat flux (H), latent heat flux (LE) for historical period was performed with 5 flux tower site-data in the region of AsiaFlux and the monthly trends of simulation results were almost equaled to observation data. The simulation results for 2006-2100 showed almost stable net radiation, slightly decreasing sensible heat flux and quite increasing latent heat flux. Especially the uptrend for RCP 8.5 has been about doubled compared to RCP 4.5 and since late 2060s, variations of net radiation and sensible heat flux would be significantly risen becoming an extreme climate condition. In a follow-up study, a simulation for energy index and hydrological index under the detailed condition will be conducted with various scenario established from this study.

기후변화에 관한 정부간 협의체 (Intergovernmental Panel on Climate Change; IPCC)의 4차 및 5차 보고서에 따르면 인류 활동에 의한 기후변화가 산업혁명 이후 급속하게 진행되고 있다고 한다. 기후변화는 주로 온도와 이산화탄소 농도의 변화로 감지되는데, 지난 100여년 간 지구 평균 온도는 $0.74^{\circ}C$ 상승하였으며, 대기 중 이산화탄소의 농도는 최소 800,000년 동안의 최대치를 기록하였다 (IPCC, 2007, 2014). 이러한 기후 변화는 수문학 연구에서 중요한 강수, 증발산, 토양수분 등에도 커다란 영향을 미치므로 이에 대한 꾸준한 연구가 필요하다. 따라서 본 연구에서는 아시아 지역을 대상으로 1951년부터 2100년까지의 주요 에너지 인자들에 대한 모의를 실시하였다. 전 세계적으로 다양한 분야에서 사용되고 있는 Common Land Model을 미래 예측을 위한 기반으로 활용하였으며, 강제입력자료는 기후변화에 대응하기 위하여 IPCC 5차 보고서에 소개된 가장 최신의 온실가스 시나리오인 대표농도경로 (Representative Concentration Pathway; RCP)를 활용하였다. 과거 기간에 대한 순복사량, 현열 및 잠열에 대한 검증은 Asiaflux 사이트에 속한 5개 지점의 자료를 활용하여 수행하였으며, 모든 인자들에 대하여 모형의 월별 경향성이 관측 자료와 거의 일치함을 확인하였다. 미래 기간의 모의에 대해서는 RCP 4.5 및 RCP 8.5를 활용한 모의 모두 순복사량은 거의 변화가 없었으며 현열은 대체적으로 하강하는 경향을, 이와 대조적으로 잠열의 경우에는 상승하는 경향을 나타내었다. 특히 RCP 8.5를 활용한 결과에서 이 증감폭은 더 크게 나타났으며, 2060년대 후반부터 순복사량과 현열의 변동성이 매우 커지는 등의 극한기후의 특징을 나타내는 것으로 보인다. 추후 연구에서는 본 연구를 토대로 다양한 시나리오를 활용하여 더욱 다양한 조건하에서의 에너지 인자 및 다른 수문학적 주요 인자들에 대한 모의를 수행할 예정이다.

Keywords

References

  1. Allen, L. H., Pan, D., Boote, K. J., Pickering, N. B., & Jones, J. W. (2003). "Carbon dioxide and temperature effects on evapotranspiration and water use efficiency of soybean." Agronomy Journal, Vol. 95 No. 4, pp. 1071-1081. https://doi.org/10.2134/agronj2003.1071
  2. An, J. H., Yu, C. S., & Yun, Y. N. (2001). "An analysis of hydrologic changes in Daechung dam basin using GCM simulation results due to global warming." Journal of Korea Water Resources Association, Vol. 34 No. 4, pp. 335-345.
  3. Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox, P., ... & Zhu, Z. (2013). "Evaluating the land and ocean components of the global carbon cycle in the CMIP5 Earth System Models." Journal of Climate, Vol. 26(18), 6801-6843. https://doi.org/10.1175/JCLI-D-12-00417.1
  4. Choi, M.H., Lee, S.O., and Kwon, H.J. (2010). "Understanding of the Common Land Model performance for water and energy fluxes in a farmland during the growing season in Korea." Hydrological processes, Vol. 24, No. 8, pp. 1063-1071. https://doi.org/10.1002/hyp.7567
  5. Dai, Y., Zeng, X., Dickinson, R. E., Baker, I., Bonan, G. B., Bosilovich, M. G., ... and Yang, Z. L. (2003). "The Common Land Model." Bulletin of the American Meteorological Society, Vol. 84, No. 8, pp. 1013-1023. https://doi.org/10.1175/BAMS-84-8-1013
  6. Heo, T.K., Boo, K.O., Shim, S,B., Hong, J.K., and Hong, J.W. (2015). "Global carbon budget changes under RCP scenarios in HadGEM2-CC." Atmosphere, Vol. 25 No. 1, pp. 85-97.
  7. Hong, S. Y., Oh, S. K., Suh, M. S., Lee, D. K., Ahn, J. B., & Kang, H. S. (2013). "Future climate changes over North-East Asian region simulated by RegCM4 based on the RCP scenarios." Journal of Climate Research, Vol. 8, pp. 27-44.
  8. Intergovernmental Panel on Climate Change (2007). "Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change." Intergovernmental Panel on Climate Change, Geneva, Switzerland.
  9. Intergovernmental Panel on Climate Change (2014). "Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change." Intergovernmental Panel on Climate Change, Geneva, Switzerland.
  10. Jang, E.S., Moon. H.W., Hwang, S.H., and Choi, M.H. (2013). "Estimation of surface fluxes using Noah LSM and assessment of the applicability in Korean peninsula." Journal of Wetlands Research, Vol. 15, No. 4, pp. 509-518. https://doi.org/10.17663/JWR.2013.15.4.509
  11. Jang, S.S., Ahn, S.R., Joh, H.K., and Kim, S.J. (2015). "Assessment of climate change impact on Imha-dam watershed hydrologic cycle under RCP scenarios." Journal of the Korean Association of Geographic Information Studies, Vol. 18 No. 1, pp. 157-170.
  12. Kim, D., Lim, Y. J., Lee, S. O., & Choi, M. (2011). "Validation of energy and water fluxes using Korea Land Data Assimilation and flux tower measurement: Haenam KoFlux site's hydro-environment analysis." Journal of the Korean Society of Civil Engineers, Vol. 31, No. 3B, pp. 285-291.
  13. Kim, M.H., Kang, H.S., Lee. J.H., Baek, H.J., and Cho, C.H. (2013). "Estimates of the water cycle and river discharge change over the global land at the end of 21st century based on RCP scenarios of HadGEM2-AO climate model." Atmosphere, Vol. 23 No. 4, pp. 425-441. https://doi.org/10.14191/Atmos.2013.23.4.425
  14. Kim, Y.J. (2010). Preliminary evaluation of the land surface model coupled to the dynamic vegetation model over East Asia. Working Paper, No. 2010-04, Korea Environment Institute, pp. 1-35.
  15. Korea Meteorological Administration. Climate Change Information Center http://ccs.climate.go.kr/index.html
  16. Lee, J. S. (2006). Hydrology, Goomibook, pp. 41
  17. Lee, J. T., Yun, S. H., & Park, M. E. (1995). "Relationships between seasonal duration of sunshine and air temperature in Korea." Korean Journal of Environmental Agriculture. Vol. 14, No. 2, pp. 155-162.
  18. Nagler, P. L., Glenn, E. P., Kim, H., Emmerich, W., Scott, R. L., Huxman, T. E., & Huete, A. R. (2007). "Relationship between evapotranspiration and precipitation pulses in a semiarid rangeland estimated by moisture flux towers and MODIS vegetation indices." Journal of Arid Environments, Vol. 70 No. 3, pp. 443-462. https://doi.org/10.1016/j.jaridenv.2006.12.026
  19. Oh, S. G., Suh, M. S., Myoung, J. S., & Cha, D. H. (2011a). "Impact of boundary conditions and cumulus parameterization schemes on regional climate simulation over South-Korea in the CORDEX-East Asia domain using the RegCM4 model." Journal of the Korean earth science society, Vol. 32 No. 4, pp. 373-387. https://doi.org/10.5467/JKESS.2011.32.4.373
  20. Oh, S. G., Suh, M. S., Cha, D. H., & Choi, S. J. (2011b). "Simulation skills of RegCM4 for regional climate over CORDEX East Asia driven by HadGEM2-AO." Journal of the Korean earth science society, Vol. 32 No. 7, pp. 732-749. https://doi.org/10.5467/JKESS.2011.32.7.732
  21. Oh, S. G., and Suh, M. S. (2013). "Projection of fine-scale climate changes over South Korea based on the RCP(2.6, 4.5, 6.0, 8.5) scenarios using RegCM4." Journal of Climate Research, Vol. 8, No. 4, pp. 291-307. https://doi.org/10.14383/cri.2013.8.4.291
  22. Park, I.S., Jang, Y.W., Chung, K.W., Lee, G.W., Owen, J.S., Kwon, W.T., and Yun, W.T. (2014). "In-depth review of IPCC 5th Assessment Report." Journal of Korean Society for Atmospheric Environment, Vol. 30 No. 2, pp. 188-200. https://doi.org/10.5572/KOSAE.2014.30.2.188
  23. Park, J.Y., Jung, H., Jang, C.H., and Kim, S. J. (2014). Assessing climate change impact on hydrological components of Yongdam dam watershed using RCP emission scenarios and SWAT model. Journal of the Korean Society of Agricultural Engineers, Vol. 56 No. 3, pp. 19-29. https://doi.org/10.5389/KSAE.2014.56.3.019
  24. Whitfield, B., Jacobs, J. M., & Judge, J. (2006). "Intercomparison study of the Land Surface Process Model and the Common Land Model for a prairie wetland in Florida." Journal of Hydrometeorology, Vol. 7, No. 6, pp. 1247-1258. https://doi.org/10.1175/JHM547.1
  25. Wiesner, C. J. (1970). Hydrometeorology. Chapman and Hall, London, pp. 30-31.