ADDITIVE ρ-FUNCTIONAL INEQUALITIES

Sung Jin Leea, Jung Rye Leeb,* and Jeong Pil Seoc

Abstract. In this paper, we solve the additive ρ-functional inequalities

\[\|f(x+y) + f(x-y) - 2f(x)\| \leq \|\rho \left(2f\left(\frac{x+y}{2}\right) + f(x-y) - 2f(x) \right)\|, \]

(0.1)

where ρ is a fixed complex number with $|\rho| < 1$, and

\[\|2f\left(\frac{x+y}{2}\right) + f(x-y) - 2f(x)\| \leq \|\rho(f(x+y) + f(x-y) - 2f(x))\|, \]

(0.2)

where ρ is a fixed complex number with $|\rho| < 1$.

Furthermore, we prove the Hyers-Ulam stability of the additive ρ-functional inequalities (0.1) and (0.2) in complex Banach spaces.

1. Introduction and Preliminaries

The functional equation $f(x+y) = f(x) + f(y)$ is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive mapping. Hyers [6] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki [1] for additive mappings and by Rassias [8] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta [5] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias’ approach.

The stability of quadratic functional equation was proved by Skof [10] for mappings $f : E_1 \rightarrow E_2$, where E_1 is a normed space and E_2 is a Banach space. Cholewa [3] noticed that the theorem of Skof is still true if the relevant domain E_1 is replaced by an Abelian group. See [2, 4, 7, 9, 12] for more information on the stability problems of functional equations.

Received by the editors March 28, 2016. Accepted April 19, 2016.

2010 Mathematics Subject Classification. Primary 39B62, 39B72, 39B52.

Key words and phrases. Hyers-Ulam stability, additive ρ-functional inequality.

*Corresponding author.
In Section 2, we solve the additive ρ-functional inequality (0.1) and prove the Hyers-Ulam stability of the additive ρ-functional inequality (0.1) in complex Banach spaces.

In Section 3, we solve the additive ρ-functional inequality (0.2) and prove the Hyers-Ulam stability of the additive ρ-functional inequality (0.2) in complex Banach spaces.

Throughout this paper, let G be a 2-divisible abelian group. Assume that X is a real or complex normed space with norm $\| \cdot \|$ and that Y is a complex Banach space with norm $\| \cdot \|$.

2. ADDITIVE ρ-FUNCTIONAL INEQUALITY (0.1)

Throughout this section, assume that ρ is a fixed complex number with $|\rho| < 1$.

In this section, we solve and investigate the additive ρ-functional inequality (0.1) in complex Banach spaces.

Lemma 2.1. If a mapping $f : G \to Y$ satisfies $f(0) = 0$ and

\[
(2.1) \quad \|f(x + y) + f(x - y) - 2f(x)\| \leq \left\| \rho \left(2f \left(\frac{x + y}{2} \right) + f (x - y) - 2f(x) \right) \right\|
\]

for all $x, y \in G$, then $f : G \to Y$ is additive.

Proof. Assume that $f : G \to Y$ satisfies (2.1).

Letting $y = x$ in (2.1), we get $\|f(2x) - 2f(x)\| \leq 0$ and so $f(2x) = 2f(x)$ for all $x \in G$. Thus

\[
(2.2) \quad f \left(\frac{x}{2} \right) = \frac{1}{2}f(x)
\]

for all $x \in G$.

It follows from (2.1) and (2.2) that

\[
\|f(x + y) + f(x - y) - 2f(x)\| \leq \left\| \rho \left(2f \left(\frac{x + y}{2} \right) + f (x - y) - 2f(x) \right) \right\|
\]

\[
= \|\rho\|\|f(x + y) + f(x - y) - 2f(x)\|
\]

and so $f(x + y) + f(x - y) = 2f(x)$ for all $x, y \in G$. It is easy to show that f is additive.

We prove the Hyers-Ulam stability of the additive ρ-functional inequality (2.1) in complex Banach spaces.
Theorem 2.2. Let $r > 1$ and θ be nonnegative real numbers, and let $f : X \to Y$ be a mapping satisfying $f(0) = 0$ and

$$
\|f(x + y) + f(x - y) - 2f(x)\| \\
\leq \|\rho \left(2f \left(\frac{x + y}{2} \right) + f(x - y) - 2f(x) \right)\| + \theta (\|x\|^r + \|y\|^r)
$$

for all $x, y \in X$. Then there exists a unique additive mapping $h : X \to Y$ such that

$$
\|f(x) - h(x)\| \leq \frac{2\theta}{2^r - 2}\|x\|^r
$$

for all $x \in X$.

Proof. Letting $y = x$ in (2.3), we get

$$
\|f(2x) - 2f(x)\| \leq 2\theta\|x\|^r
$$

for all $x \in X$. So

$$
\|f(x) - 2f \left(\frac{x}{2} \right)\| \leq \frac{2\theta}{2^r}\|x\|^r
$$

for all $x \in X$. Hence

$$
\left\|2^j f \left(\frac{x}{2^j} \right) - 2^m f \left(\frac{x}{2^m} \right)\right\| \leq \sum_{j=1}^{m-1} \left\|2^j f \left(\frac{x}{2^j} \right) - 2^{j+1} f \left(\frac{x}{2^{j+1}} \right)\right\|
$$

for all nonnegative integers m and l with $m > l$ and all $x \in X$. It follows from (2.6) that the sequence $\{2^m f \left(\frac{x}{2^m} \right)\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{2^m f \left(\frac{x}{2^m} \right)\}$ converges. So one can define the mapping $h : X \to Y$ by

$$
h(x) := \lim_{n \to \infty} 2^n f \left(\frac{x}{2^n} \right)
$$

for all $x \in X$. Moreover, letting $l = 0$ and passing the limit $m \to \infty$ in (2.6), we get (2.4).

It follows from (2.3) that

$$
\|h(x + y) + h(x - y) - 2h(x)\|
$$

$$
= \lim_{n \to \infty} 2^n \left\| f \left(\frac{x + y}{2^n} \right) + f \left(\frac{x - y}{2^n} \right) - 2f \left(\frac{x}{2^n} \right)\right\|
$$

$$
\leq \lim_{n \to \infty} 2^n \|\rho\| \left\|2f \left(\frac{x + y}{2^{n+1}} \right) + f \left(\frac{x - y}{2^{n+1}} \right) - 2f \left(\frac{x}{2^{n+1}} \right)\right\| + \lim_{n \to \infty} \frac{2^n \theta}{2^{nr}} (\|x\|^r + \|y\|^r)
$$

$$
= \|\rho\| \left\|2h \left(\frac{x + y}{2} \right) + h(x - y) - 2h(x)\right\|
$$
for all $x, y \in X$. So
\[
\|h(x + y) + h(x - y) - 2h(x)\| \leq \|\rho \left(2h \left(\frac{x + y}{2} \right) + h(x - y) - 2h(x)\right)\|
\]
for all $x, y \in X$. By Lemma 2.1, the mapping $h : X \to Y$ is additive.

Now, let $T : X \to Y$ be another additive mapping satisfying (2.4). Then we have
\[
\|h(x) - T(x)\| = 2^n \left\|h \left(\frac{x}{2^n}\right) - T \left(\frac{x}{2^n}\right)\right\|
\leq 2^n \left(\left\|h \left(\frac{x}{2^n}\right) - f \left(\frac{x}{2^n}\right)\right\| + \|T \left(\frac{x}{2^n}\right) - f \left(\frac{x}{2^n}\right)\|\right)
\leq \frac{4 \cdot 2^n}{(2^r - 2)2^{nr}} \|x\|^r,
\]
which tends to zero as $n \to \infty$ for all $x \in X$. So we can conclude that $h(x) = T(x)$ for all $x \in X$. This proves the uniqueness of h. Thus the mapping $h : X \to Y$ is a unique additive mapping satisfying (2.4).

Theorem 2.3. Let $r < 1$ and θ be positive real numbers, and let $f : X \to Y$ be a mapping satisfying $f(0) = 0$ and (2.3). Then there exists a unique additive mapping $h : X \to Y$ such that
\[
\|f(x) - h(x)\| \leq \frac{2\theta}{2 - 2^r} \|x\|^r
\]
for all $x \in X$.

Proof. It follows from (2.5) that
\[
\left\|f(x) - \frac{1}{2} f(2x)\right\| \leq \theta \|x\|^r
\]
for all $x \in X$. Hence
\[
\left\|\frac{1}{2^l} f(2^l x) - \frac{1}{2^m} f(2^m x)\right\| \leq \sum_{j=l}^{m-1} \left\|\frac{1}{2^j} f(2^j x) - \frac{1}{2^{j+1}} f(2^{j+1} x)\right\|
\leq \sum_{j=l}^{m-1} 2^{rj} \|x\|^r
\]
for all nonnegative integers m and l with $m > l$ and all $x \in X$. It follows from (2.8) that the sequence $\left\{\frac{1}{2^n} f(2^n x)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{\frac{1}{2^n} f(2^n x)\right\}$ converges. So one can define the mapping $h : X \to Y$ by
\[
h(x) := \lim_{n \to \infty} \frac{1}{2^n} f(2^n x)
\]
for all $x \in X$. Moreover, letting $l = 0$ and passing the limit $m \to \infty$ in (2.8), we get (2.7).

The rest of the proof is similar to the proof of Theorem 2.2. □

Remark 2.4. If ρ is a real number such that $-1 < \rho < 1$ and Y is a real Banach space, then all the assertions in this section remain valid.

3. **ADDITIVE ρ-FUNCTIONAL INEQUALITY (0.2)**

Throughout this section, assume that ρ is a fixed complex number with $|\rho| < 1$.

In this section, we solve and investigate the additive ρ-functional inequality (0.2) in complex Banach spaces.

Lemma 3.1. If a mapping $f : G \to Y$ satisfies
\[
\|2f\left(\frac{x+y}{2}\right) + f(x-y) - 2f(x)\| \leq \|\rho(f(x+y) + f(x-y) - 2f(x))\|
\]
for all $x, y \in G$, then $f : G \to Y$ is additive.

Proof. Assume that $f : G \to Y$ satisfies (3.1).

Letting $x = y = 0$ in (3.1), we get $\|f(0)\| \leq 0$. So $f(0) = 0$.

Letting $y = 0$ in (3.1), we get $\|2f\left(\frac{x}{2}\right) - f(x)\| \leq 0$ and so
\[
2f\left(\frac{x}{2}\right) = f(x)
\]
for all $x \in G$.

It follows from (3.1) and (3.2) that
\[
\|f(x+y) + f(x-y) - 2f(x)\| = \left\|2f\left(\frac{x+y}{2}\right) + f(x-y) - 2f(x)\right\|
\leq |\rho|\|f(x+y) + f(x-y) - 2f(x)\|
\]
and so $f(x+y) + f(x-y) = 2f(x)$ for all $x, y \in G$. It is easy to show that f is additive. □

We prove the Hyers-Ulam stability of the additive ρ-functional inequality (3.1) in complex Banach spaces.

Theorem 3.2. Let $r > 1$ and θ be nonnegative real numbers, and let $f : X \to Y$ be a mapping such that
\[
\|2f\left(\frac{x+y}{2}\right) + f(x-y) - 2f(x)\|
\leq \|\rho(f(x+y) + f(x-y) - 2f(x))\| + \theta(\|x\|^r + \|y\|^r)
\]
for all \(x, y \in X \). Then there exists a unique additive mapping \(h : X \to Y \) such that

\[
\| f(x) - h(x) \| \leq \frac{2^r \theta}{2^r - 2} \| x \|^r
\]

for all \(x \in X \).

Proof. Letting \(x = y = 0 \) in (3.3), we get \(\| f(0) \| \leq 0 \). So \(f(0) = 0 \).

Letting \(y = 0 \) in (3.3), we get

\[
\| 2f\left(\frac{x}{2^j} \right) - f(x) \| \leq \theta \| x \|^r
\]

for all \(x \in X \). So

\[
\| 2^j f\left(\frac{x}{2} \right) - 2^m f\left(\frac{x}{2^m} \right) \| \leq \sum_{j=l}^{m-1} \| 2^j f\left(\frac{x}{2^j} \right) - 2^{j+1} f\left(\frac{x}{2^{j+1}} \right) \|
\]

\[
\leq \sum_{j=l}^{m-1} \frac{2^j \theta}{2^j} \| x \|^r
\]

for all nonnegative integers \(m \) and \(l \) with \(m > l \) and all \(x \in X \). It follows from (3.6) that the sequence \(\{ 2^n f\left(\frac{x}{2^n} \right) \} \) is a Cauchy sequence for all \(x \in X \). Since \(Y \) is complete, the sequence \(\{ 2^n f\left(\frac{x}{2^n} \right) \} \) converges. So one can define the mapping \(h : X \to Y \) by

\[
h(x) := \lim_{n \to \infty} 2^n f\left(\frac{x}{2^n} \right)
\]

for all \(x \in X \). Moreover, letting \(l = 0 \) and passing the limit \(m \to \infty \) in (3.6), we get (3.4).

It follows from (3.3) that

\[
\| 2h\left(\frac{x+y}{2} \right) + h(x-y) - 2h(x) \|
\]

\[
= \lim_{n \to \infty} 2^n \left\| 2f\left(\frac{x+y}{2^{n+1}} \right) + f\left(\frac{x-y}{2^n} \right) - 2 f\left(\frac{x}{2^n} \right) \right\|
\]

\[
\leq \lim_{n \to \infty} 2^n \left\| \rho \left(f\left(\frac{x+y}{2^n} \right) + f\left(\frac{x-y}{2^n} \right) - 2 f\left(\frac{x}{2^n} \right) \right) \right\| + \lim_{n \to \infty} \frac{2^n \theta}{2^{n+1}} (\| x \|^r + \| y \|^r)
\]

\[
= \| \rho(h(x+y) + h(x-y) - 2h(x)) \|
\]

for all \(x, y \in X \). So

\[
\| 2h\left(\frac{x+y}{2} \right) + h(x-y) - 2h(x) \| \leq \| \rho(h(x+y) + h(x-y) - 2h(x)) \|
\]

for all \(x, y \in X \). By Lemma 3.1, the mapping \(h : X \to Y \) is additive.
Now, let $T : X \to Y$ be another additive mapping satisfying (3.4). Then we have
\[
\|h(x) - T(x)\| = 2^n \left\| h \left(\frac{x}{2^n} \right) - T \left(\frac{x}{2^n} \right) \right\|
\leq 2^n \left(\|h \left(\frac{x}{2^n} \right) - f \left(\frac{x}{2^n} \right)\| + \|T \left(\frac{x}{2^n} \right) - f \left(\frac{x}{2^n} \right)\| \right)
\leq \frac{2 \cdot 2^n \cdot 2^r}{(2^r - 2)2^{nr}} \theta \|x\|^r,
\]
which tends to zero as $n \to \infty$ for all $x \in X$. So we can conclude that $h(x) = T(x)$ for all $x \in X$. This proves the uniqueness of h. Thus the mapping $h : X \to Y$ is a unique additive mapping satisfying (3.4). □

Theorem 3.3. Let $r < 1$ and θ be positive real numbers, and let $f : X \to Y$ be a mapping satisfying (3.3). Then there exists a unique additive mapping $h : X \to Y$ such that
\[
\|f(x) - h(x)\| \leq \frac{2^r \theta}{2^r - 2^r} \|x\|^{2r}
\]
for all $x \in X$.

Proof. It follows from (3.5) that
\[
\left\| f(x) - \frac{1}{2} f(2x) \right\| \leq \frac{2^r \theta}{2^r - 2^r} \|x\|^{2r}
\]
for all $x \in X$. Hence
\[
\left\| \frac{1}{2^l} f(2^l x) - \frac{1}{2^m} f(2^m x) \right\| \leq \sum_{j=l}^{m-1} \left\| \frac{1}{2^j} f(2^j x) - \frac{1}{2^{j+1}} f(2^{j+1} x) \right\|
\leq \frac{2^r \theta}{2^r} \sum_{j=l}^{m-1} \frac{2^{rj}}{2^j} \|x\|^{2r}
\]
for all nonnegative integers m and l with $m > l$ and all $x \in X$. It follows from (3.8) that the sequence $\{ \frac{1}{2^m} f(2^m x) \}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{ \frac{1}{2^m} f(2^m x) \}$ converges. So one can define the mapping $h : X \to Y$ by
\[
h(x) := \lim_{n \to \infty} \frac{1}{2^n} f(2^n x)
\]
for all $x \in X$. Moreover, letting $l = 0$ and passing the limit $m \to \infty$ in (3.8), we get (3.7).

The rest of the proof is similar to the proof of Theorem 3.2. □

Remark 3.4. If ρ is a real number such that $-1 < \rho < 1$ and Y is a real Banach space, then all the assertions in this section remain valid.
REFERENCES

Department of Mathematics, Daejin University, Kyunggi 11159, Korea

Email address: hyper@daejin.ac.kr

Department of Mathematics, Daejin University, Kyeonggi 11159, Korea

Email address: jrlee@daejin.ac.kr

Ohsang High School, Gumi, Kyeongsangbuk-do 730-842, Korea

Email address: sjp4829@hanmail.net