DOI QR코드

DOI QR Code

이끼필터를 이용한 안개 포집/제거 시스템

Fog Collection/Removal System Using a Moss Filter

  • 오선종 (한국기계연구원 나노자연모사연구실) ;
  • 박민용 (한국기계연구원 나노자연모사연구실) ;
  • 김완두 (한국기계연구원 나노자연모사연구실) ;
  • 임현의 (한국기계연구원 나노자연모사연구실)
  • Oh, Sunjong (Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials) ;
  • Park, Minyong (Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials) ;
  • Kim, Wandoo (Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials) ;
  • Lim, Hyuneui (Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials)
  • 투고 : 2016.02.15
  • 심사 : 2016.04.06
  • 발행 : 2016.07.01

초록

안개는 교통시스템에서 경제적 손실을 초래하고 대기오염물질과 결합하여 건강에 문제를 일으킨다. 안개 제거 시스템은 개발노력에도 불구하고 대부분 발생한 안개를 모니터링 후 제거하도록 구성되어 있으며, 지속적으로 시스템을 유지하기 위한 에너지 공급과 유지 보수가 필요하다. 본 연구에서는 이러한 안개제거 시스템의 한계를 극복하기 위하여 이끼필터(이끼를 결합한 폴리올레핀 그물망)를 응용하는 안개 제거 방법을 제시하였다. 서로 다른 표면구조를 가지는 3가지 이끼의 수분 흡수율을 측정하고 이끼구조와의 상관관계를 살펴보았다. 가장 작은 기공의 직경과 가장 큰 총 기공의 내부 표면적을 가지는 공작이끼가 높은 수분 흡수율을 가짐을 확인 후, 공작이끼로 안개 제거 필터를 만들어 안개제거 포집/제거에 사용되는 기존의 폴리올레핀 그물망과 성능을 비교하여 보았다. 본 논문에서 제시된 이끼필터를 이용한 안개 제거 시스템은 에너지 없이 지속적으로 안개를 제거할 수 있는 경제적이면서도 친환경적인 방법이다.

Fog causes economic losses in transportation. It also results in health problems when it is combined with air pollutants. Considerable research efforts have focused on developing fog removal systems. However, most systems operate themselves after monitoring the fog. Additionally, continuous energy supply and maintenance are required to retain the fog-removal efficiency of the system. This study included the demonstration of a moss filter (a polyolefin mesh interlaced with moss) as a fog-removal method overcoming the limitations of the fog removal system. Three types of mosses with different surface structures were investigated to elucidate the relation between the moisture absorption rate and the structures. Among the different moss types, Hypopterygium japinicum showed the highest efficiency based on the smallest pore diameter and the largest total pore area. The visibilities with the moss filter and the polyolefin mesh were compared to perform the fog removal tests. The moss filter could provide a cost-effective and eco-friendly fog removal system with sustainability.

키워드

참고문헌

  1. Gultepe, I. Tardif, R., Michaelides, S. C., Cermak, J., Bott, A., Bendix, J., Muller, M. D., Pagowski, M., Hansen, B., Ellrod, G., Jacobs, W., Toth, G. and Cober, S. G., 2007, "Fog Research: a Review of Past Achievements and Future Perspectives," Pure and Appl. Geophy., Vol. 164, pp. 1121-1159. https://doi.org/10.1007/s00024-007-0211-x
  2. Cowan, R. S., 1997, A social history of American technology, New York, NY: Oxford University Press.
  3. Brunt, D., 1939, "The Artificial Dissipation of Fog," Sci. Instr., Vol. 16, pp. 137-140. https://doi.org/10.1088/0950-7671/16/5/301
  4. Seinfeld, J. H., 1986, Atmospheric Chemistry and Physics of Air Pollution, John Wiley, New York. pp. 198-241.
  5. Martikainen, A. L., 2007, "Fog Removal with a Fog Mesh-mist Eliminators and Multiple Mesh Systems," International Journal of Mining, Reclamation and Environment, Vol. 21, pp. 185-197. https://doi.org/10.1080/17480930701325061
  6. Minami, M., Kato, R., Hagiwara, T., Araki, K., Nagata, Y. and Takitani, K., 2008, "Development of a Visibility Estimation Model Based on Visibility Information from Road Images Captured in Winter," Proceedings of the 87th Annual Meeting of the Transportation Research Board, Washington, D.C.
  7. Parker, A. R. and Lawrence, C. R., 2001, "Water Capture by a Desert Beetle," Nature, Vol. 414 pp. 33-34. https://doi.org/10.1038/35102108
  8. Zheng, Y., Bai, H., Huang, Z., Tian, X., Nie, F. Q., Zhao, Y., Zhai, J. and Jiang, L., 2010, "Directional Water Collection on Wetted Spider Silk," Nature, Vol. 463 pp. 640-643.
  9. Ju, J., Bai, H., Zheng, Y., Zhao, T., Fang, R. and Jiang, L., 2012, "A Multi-Structural and Multi-Functional Integrated Fog Collection System in Cactus," Nature Commun., Vol. 3, p. 1247. https://doi.org/10.1038/ncomms2253
  10. Comanns, P., Effertz, C., Hischen, F., Staudt, K., Bohme, W. and Baumgartner, W., 2011, "Moisture Harvesting and Water Transport Through Specialized Micro-Structures on the Integument of Lizards," Beilstein J. Nanotechnol., Vol. 2, pp. 204-214. https://doi.org/10.3762/bjnano.2.24
  11. Lee, A. N., Moon, M.-W., Lim, H., Kim, W.-D. and Kim, H.-Y., 2012, "Water Harvest via Dewing," Langmuir, Vol. 28, pp. 10183-10191. https://doi.org/10.1021/la3013987
  12. Koch, K. and Barthlott, W., 2009, "Super-Hydrophobic and Superhydrophilic Plant Surfaces: an Inspiration for Biomimetic Materials," Phil. Trans. R. Soc. A, 367, pp. 1487-1509. https://doi.org/10.1098/rsta.2009.0022
  13. Chaudhury, M. K., Chakrabarti, A. and Tibrewal, T., 2014, "Coalescence of Drops Near a Hydrophilic Boundary Leads to Long Range Directed Motion," Extre. Mech. Lett., Vol. 1, pp. 104-113. https://doi.org/10.1016/j.eml.2014.11.007
  14. Park, K.C., Chhatre, S.S., Srinivasan S, Cohen, R.E. and McKinley, G. H., 2013, "Optimal Design of Permeable Fiber Network Structures for Fog Harvesting," Langmuir, Vol. 29, pp. 13269-77. https://doi.org/10.1021/la402409f
  15. Evans, R. D. and Johansen, J. R., 1999, "Microbiotic Crusts and Ecosystem Processes," Crit. Rev. Plant Sci., Vol. 18, pp. 182-225.
  16. Schofield, W. B., 1985, Introduction to Bryology, Macmilllan Pub. Co.