DOI QR코드

DOI QR Code

Process development of a virally-safe dental xenograft material from porcine bones

바이러스 안전성이 보증된 돼지유래 골 이식재 제조 공정 개발

  • Kim, Dong-Myong (School of Biological Sciences, Seoul National University) ;
  • Kang, Ho-Chang (Probiomimetic Research Institute) ;
  • Cha, Hyung-Joon (Chemical Engineering Department, Pohang University of Science and Technology) ;
  • Bae, Jung Eun (Department of Biological Sciences & Biotechnology, Center for Biopharmaceuticals Safety Validation, Hannam University) ;
  • Kim, In Seop (Department of Biological Sciences & Biotechnology, Center for Biopharmaceuticals Safety Validation, Hannam University)
  • 김동명 (서울대학교 생명과학부) ;
  • 강호창 (푸르고 프로바이오미메틱연구센터) ;
  • 차형준 (포항공과대학 화학공학과) ;
  • 배정은 (한남대학교 생명시스템과학과 & 바이오의 약품안전성검증센터) ;
  • 김인섭 (한남대학교 생명시스템과학과 & 바이오의 약품안전성검증센터)
  • Received : 2016.03.30
  • Accepted : 2016.06.13
  • Published : 2016.06.30

Abstract

A process for manufacturing virally-safe porcine bone hydroxyapatite (HA) has been developed to serve as advanced xenograft material for dental applications. Porcine bone pieces were defatted with successive treatments of 30% hydrogen peroxide and 80% ethyl alcohol. The defatted porcine bone pieces were heat-treated in an oxygen atmosphere box furnace at $1,300^{\circ}C$ to remove collagen and organic compounds. The bone pieces were ground with a grinder and then the bone powder was sterilized by gamma irradiation. Morphological characteristics such as SEM (Scanning Electron Microscopy) and TEM (Transmission Electron Microscopy) images of the resulting porcine bone HA (THE Graft$^{(R)}$) were similar to those of a commercial bovine bone HA (Bio-Oss$^{(R)}$). In order to evaluate the efficacy of $1,300^{\circ}C$ heat treatment and gamma irradiation at a dose of 25 kGy for the inactivation of porcine viruses during the manufacture of porcine bone HA, a variety of experimental porcine viruses including transmissible gastroenteritis virus (TGEV), pseudorabies virus (PRV), porcine rotavirus (PRoV), and porcine parvovirus (PPV) were chosen. TGEV, PRV, PRoV, and PPV were completely inactivated to undetectable levels during the $1,300^{\circ}C$ heat treatment. The mean log reduction factors achieved were $${\geq_-}4.65$$ for TGEV, $${\geq_-}5.81$$ for PRV, $${\geq_-}6.28$$ for PRoV, and $${\geq_-}5.21$$ for PPV. Gamma irradiation was also very effective at inactivating the viruses. TGEV, PRV, PRoV, and PPV were completely inactivated to undetectable levels during the gamma irradiation. The mean log reduction factors achieved were $${\geq_-}4.65$$ for TGEV, $${\geq_-}5.87$$ for PRV, $${\geq_-}6.05$$ for PRoV, and $${\geq_-}4.89$$ for PPV. The cumulative log reduction factors achieved using the two different virus inactivation processes were $${\geq_-}9.30$$ for TGEV, $${\geq_-}11.68$$ for PRV, $${\geq_-}12.33$$ for PRoV, and $${\geq_-}10.10$$ for PPV. These results indicate that the manufacturing process for porcine bone HA from porcine-bone material has sufficient virus-reducing capacity to achieve a high margin of virus safety.

동물유래성분을 원재료로 사용하는 의료기기는 원료물질 유래 바이러스가 오염될 가능성이 있기 때문에 생산과정 중 바이러스가 오염되지 않도록 하여야 한다. 또한 생산공정은 오염될 가능성이 있는 바이러스들을 불활화하거나 제거하는 공정을 포함하여야 한다. 본 연구를 통해 돼지유래 이종골을 원재료로 사용한 바이러스 안전성이 보증된 치과용 골이식재(THE Graft$^{(R)}$) 제조공정을 개발하였다. THE Graft$^{(R)}$ 제조공정은 30% 과산화수소수와 80% 에탄올을 각각 처리하여 지방을 제거하는 공정과 $1,300^{\circ}C$ 열처리 공정을 통해 콜라겐과 유기물을 제거하는 공정을 포함한다. 또한 최종적으로 생산된 hydroxyapatite 성분의 골이식재에 25 kGy의 감마선을 조사하여 감염성 위해인자를 불활화하는 공정을 포함한다. THE Graft$^{(R)}$의 형태학적 특성을 소유래 hydroxyapatite 성분의 골이식재인 Bio-Oss와 SEM과 TEM을 이용하여 비교한 결과 구조적 특성이 유사함을 확인하였다. $1,300^{\circ}C$ 열처리 공정과 25 kGy 감마선 조사 공정의 바이러스 불활화 효과를 평가하기 위해 transmissible gastroenteritis virus (TGEV), pseudorabies virus (PRV), porcine rotavirus (PRoV), porcine parvovirus (PPV)를 모델 바이러스로 선정하였다. $1,300^{\circ}C$ 열처리 공정에서 TGEV, PRV, PRoV, PPV 모두 검출한계 이하로 불활화되었으며, 바이러스 로그 감소 값은 각각 ${\geq}4.65$, ${\geq}5.81$, ${\geq}6.28$, ${\geq}5.21$이었다. 또한 감마선 조사 공정에서도 TGEV, PRV, PRoV, PPV 모두 검출한계 이하로 불활화되었으며, 바이러스 로그 감소 값은 각각 ${\geq}4.65$, ${\geq}5.87$, ${\geq}6.05$, ${\geq}4.89$이었다. 두 공정에서 TGEV, PRV, PRoV, PPV의 누적 바이러스 로그 감소 값은 각각 ${\geq}9.30$, ${\geq}11.68$, ${\geq}12.33$, ${\geq}10.10$이었다. 이상의 결과에 의하면, THE Graft$^{(R)}$ 제조공정은 바이러스 안전성 보증을 위한 충분한 바이러스 불활화 능력을 가지고 있는 것으로 판단된다.

Keywords

References

  1. Accorsi-Mendonca, T., Conz, M.B., Barros, T.C., de Sena, L.A., Soares, G.A., and Granjeiro, J.M. 2008. Physicochemical characterization of two deproteinized bovine xenografts. Braz. Oral Rres. 22, 5-10. https://doi.org/10.1590/S1806-83242008000500002
  2. Bae, J.E., Kim, C.K., Kim, S., Yanf, E.K., and Kim, I.S. 2012. Virus inactivation during the manufacture of a collagen type I from bovine hides. Korean J. Microbiol. 48, 314-318. https://doi.org/10.7845/kjm.2012.049
  3. Bae, J.E., Kim, C.K., Kim, S., Yang, E.K., and Kim, I.S. 2010. Process development of a virally-safe acellular bovine amniotic membrane for biological dressing. Korean J. Microbiol. Biotechnol. 38, 420-427.
  4. Bauer, T.W. and Muschler, G.F. 2000. Bone graft materials: an overview of the basic science. Clin. Orthop. Relat. Res. 371, 10-27. https://doi.org/10.1097/00003086-200002000-00003
  5. Concannon, M.J., Boschert, M.T., and Puckett, C.L. 1997. Bone induction using demineralized bone in the rabbit femur: A longterm study. Plast. Reconstr. Surg. 99, 1983-1988. https://doi.org/10.1097/00006534-199706000-00025
  6. Damien, C.J. and Parsons, J.R. 1991. Bone graft and bone graft substitutes: a review of current technology and applications. J. Appl. Biomater. 2, 187-208. https://doi.org/10.1002/jab.770020307
  7. Ducheyne, P.E. and Qiu, Q. 1999. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials 20, 2287-2303. https://doi.org/10.1016/S0142-9612(99)00181-7
  8. Forest, P., Morfin, F., Bergeron, E., Dore, J., Bensa, S., Wittmann, C., Picot, S., Renaud, F.N., Freney, J., and Gagnieu, C. 2007. Validation of a viral and bacterial inactivation step during the extraction and purification process of porcine collagen. Biomed. Mater. Eng. 17, 199-208.
  9. Haas, R., Mailath, G., Dortbudak, O., and Watzek, G. 1998. Bovine hydroxyapatite for maxillary sinus augmentation: analysis of interfacial bond strength of dental implants using pull-out tests. Clin. Oral Implant Res. 9, 117-122. https://doi.org/10.1034/j.1600-0501.1998.090207.x
  10. Hallman, M. and Thor, A. 2008. Bone substitutes and growth factors as an alternative/complement to autogenous bone for grafting in implant dentistry. Periodontology 2000 47, 172-192. https://doi.org/10.1111/j.1600-0757.2008.00251.x
  11. Hodde, J. and Hiles, M. 2002. Virus safety of a porcine-derived medical device: evaluation of a viral inactivation method. Biotechnol. Bioeng. 79, 211-216. https://doi.org/10.1002/bit.10281
  12. International Conference on Harmonisation. 1998. Guidance on viral safety evaluation of biotechnology products derived from cell lines of human or animal origin. Federal Resister 63, 51074-51084.
  13. International Organization for Standardization. 2006. ISO 11137-2: 2006. Sterilization of health care products - radiation -- Part 2: Establishing the sterilization dose. Geneva, Switzerland.
  14. International Organization for Standardization. 2007. Medical devices utilizing animal tissues and their derivatives-Part 3: Validation of the elimination and/or inactivation of viruses and transmissible spongiform encephalopathy (TSE) agent. Geneva, Switzerland.
  15. Jensen, S.S., Bosshardt, D.D., and Buser, D. 2009. Bone grafts and bone substitute materials, pp. 1-96. In Buser, D. (ed.), 20 Years of Guided Bone Regeneration in Implant Dentistry: Quintessence Publishing, Chicago, USA.
  16. Karber, J. 1931. Beitrag zur kollectiven Behandlung pharmakologische Reihenversuche. Arch. Exp. Path. Pharmak. 162, 480-483. https://doi.org/10.1007/BF01863914
  17. Khan, S.N., Cammisa, F.P.Jr., Sandhu, H.S., Diwan, A.D., Giradi, F.P., and Lane, J.M. 2005. The biology of bone grafting. J. Am. Acad. Orthop. Surg. 13, 77-86. https://doi.org/10.5435/00124635-200501000-00010
  18. Kim, D.M., Kim, H.J., Kang, H.C., Kim, H.S., Kim, D.H., Kim, K.I., Yun, S.Y., Han, K.H., Kim, J.Y., and Lee, J.H. 2014a. A method for preparing a porcine bone graft with an excellent performance in cell adhesion and bone formation using nano hydroxyapatite surface modification technology, and a porcine bone graft prepared thereby, Kor. Patent. No. 10-2014-0052399: 1-30.
  19. Kim, D.M., Kim, H.J., Kang, H.C., Kim, H.S., and Lee, J.H. 2014b. Method of funtionalize surface of bone graft with bone nano particle and bone graft having funtionalized surface by bone nano particle, Kor. Patent. No. 10-2014-0078335: 1-28.
  20. Kim, Y., Rodriguez, A.E., and Nowzari, H. 2016. The risk of prion infection through bovine grafting materials. Clin. Implant Dent. Relat. Res. DOI 10.1111/cid.12391.
  21. Park, J.W., Ko, H.J., Jang, J.H., Kang, H., and Suh, J.Y. 2012. Increased new bone formation with a surface magnesiumincorporated deproteinized porcine bone substitute in rabbit calvarial defects. J. Biomed. Mater. Res. 100, 834-840.
  22. Pinholt, E.M., Bang, G., and Haanaes, H.R. 1991. Alveolar ridge augmentation in rats by Bio-Oss. Scand. J. Dent. Res. 99, 154-161.
  23. Valimaki, V.V. and Aro, H.T. 2006. Molecular basis for action of bioactive glasses as bone graft substitute. Scand. J. Surg. 95, 95-102. https://doi.org/10.1177/145749690609500204
  24. Venkataraman, N., Bansal, S., Bansal, P., and Narayan, S. 2015. Dynamics of bone graft healing around implants. J. ICDRO 7, 40-47.
  25. Yoo, K.H., Shim, K.M., Park, H.J., and Choi, S.H. 2010. Effect of porcine cancellous bones on regeneration in rats with calvarial defect. J. Life Sci. 20, 1207-1213. https://doi.org/10.5352/JLS.2010.20.8.1207