References
- Alexander, M. 1985. Introduction to soil microbiology. 2nd. John Wiley & Sons.
- Baboshin, M., Akimov, V., Baskunov, B., Born, T.L., Khan, S.U., and Golovleva, L. 2008. Conversion of polycyclic aromatic hydrocarbons by Sphingomonas sp. VKM B-2434. Biodegradation 19, 567-576. https://doi.org/10.1007/s10532-007-9162-2
- Basu, A., Apte, S.K., and Phale, P.S. 2006. Preferential utilization of aromatic compounds over glucose by Pseudomonas putida CSV86. Appl. Environ. Microbiol. 72, 2226-2230. https://doi.org/10.1128/AEM.72.3.2226-2230.2006
- Cole, J.R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R.J., Kulam-Syed-Mohideen, A.S., McGarrell, D.M., Marsh, T., Garrity, G.M., et al. 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, 141-145.
- Hackl, E., Pfeffer, M., Donat, C., Bachmann, G., and Zechmeister-Boltenstern, S. 2005. Composition of the microbial communities in the mineral soil under different types of natural forest. Soil Biol. Biochem. 37, 661-671. https://doi.org/10.1016/j.soilbio.2004.08.023
- Hackl, E., Zechmeister-Boltenstern, S., Bodrossy, L., and Sessitsch, A. 2004. Comparison of diversities and compositions of bacterial populations inhabiting natural forest soils. Appl. Environ. Microbiol. 70, 5057-5065. https://doi.org/10.1128/AEM.70.9.5057-5065.2004
- Han, S.I. 2015. Phylogenetic characterization of bacterial populations in different layers of oak forest soil. Korean J. Microbiol. 51, 133-140. https://doi.org/10.7845/kjm.2015.5017
- Han, S.I., Cho, M.H., and Whang, K.S. 2008. Comparison of phylogenetic characteristics of bacterial populations in a quercus and pine humus forest soil. Korean J. Microbiol. 44, 237-243.
- Haritash, A.K. and Kaushik, C.P. 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs). J. Hazard Mater. 169, 1-15. https://doi.org/10.1016/j.jhazmat.2009.03.137
- Kato, H., Mori, H., Maruyama, F., Toyoda, A., Oshima, K., Endo, R., Fuchu, G., Miyakoshi, M., Dozono, A., Ohtsubo, Y., et al. 2015. Time-series metagenomic analysis reveals robustness of soil microbiome against chemical disturbance. DNA Res. 22, 413-424. https://doi.org/10.1093/dnares/dsv023
- Kim, Y.G., Son, H.J., Kim, K.K., Kim, H.S., and Lee, Y.G. 2002. Isolation of a lignolytic bacterium for degradation and utilization of lignocellulose. J. Life Sci. 12, 392-398. https://doi.org/10.5352/JLS.2002.12.4.392
- Kirk, T.K. and Farrell, R.L. 1987. Enzymatic "combustion": the microbial degradation of lignin. Annu. Rev. Microbiol. 41, 465-505. https://doi.org/10.1146/annurev.mi.41.100187.002341
- Lee, K.J., Han, S.S., Kim, J.H., and Kim, E.S. 1996. Forest ecology (in Korean). Hyang Moon Sa, Seoul, Korea.
- Monties, B. 1988. Preparation of dioxane lignin fractions by acidolysis, pp. 31-35. In Wood, W.A. and Kellogg, S.T. (eds.). Methods in Enzymology, Vol. 161. Academy press, New York, USA.
- Mun, H.T. and Joo, H.T. 1994. Litter production and decomposition in the Quercus acutissima and Pinus rigida forest soil. Korean J. Ecol. 17, 345-353.
- Otsuka, Y., Muramatus, Y., Nakagawa, Y., Matsuda, M., Nakamura, M., and Murata, H. 2011. Burkholderia oxyphila sp. nov., isolated from acidic forest soil that catabolizes (+)-catechin and its putative aromatic derivatives. Int. J. Syst. Evol. Microbiol. 61, 249-254. https://doi.org/10.1099/ijs.0.017368-0
- Park, J.W. 2016. Metagenome analysis of plant detritus from the Torrya nucifera reveals a novel lignocellulose degrading community. Master's thesis. Chung-Ang University.
- Pometto, A.L. and Craword, D.L. 1986. Catabolic fate of Streptomyces viridosporus T7A-produced, acid-precipitable polymeric lignin upon incubation with lignolytic 15. Streptomyces species and Phanerochaete chrysosporium. Appl. Environ. Microbiol. 51, 171-179.
- Quince, C., Lanzen, A., Davenport, R.J., and Turnbaugh, P.J. 2011. Removing noise from pyrosequenced amplicons. BMC Bioinformatics 12, 38. https://doi.org/10.1186/1471-2105-12-38
- Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., et al. 2009. Introducing mothur: open-source, platform-independent, community supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537-7541. https://doi.org/10.1128/AEM.01541-09
- Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498-2504. https://doi.org/10.1101/gr.1239303
- Song, Y.J. 2009. Characterization of aromatic hydrocarbon degrading bacteria isolated from pine litter. Korean J. Microbiol. Biotechnol. 37, 333-339.
- Stevenson, F.J. 1994. Humus chemistry: Genesis, composition, reactions, 2nd ed. John Wiley and Sons, New York, N.Y., USA.
- Story, S.P., Kline, E.L., Hughes, T.A., Riley, M.B., and Hayasaka, S.S. 2004. Degradation of aromatic hydrocarbons by Sphingomonas paucimobilis EPA505. Arch. Environ. Contam. Toxicol. 47, 168-176.
- Sutherland, J.B., Rafii, F., Kahn, A.A., and Cerniglia, C.E. 1995. Mechanisms of polycyclic aromatic hydrocarbon degradation, pp. 269-306. In Young, L.Y. and Cerniglia, C.E. (eds.), Microbial transformation and degradation of toxic organic chemicals. Wiley-Liss, NY, USA.
- Takada-Hoshino, Y. and Matsumoto, M. 2004. An improved DNA extraction method using skim milk from soils that strongly absorb DNA. Microbes Environ. 19, 13-19. https://doi.org/10.1264/jsme2.19.13
- Vandamme, P., Govan, J.R.W., and LiPuma, J.J. 2007. Diversity and role of Burkholderia spp. Burkholderia: Molecular Microbiology and Genomics, pp. 1-28. In Coenye, T. and Vandamme, P. (eds.). Horizon Bioscience, Wymondham, UK.
- Wackett, L.P. and Ellis, L.B. 1999. Predicting biodegradation. Environ. Microbiol. 1, 119-124. https://doi.org/10.1046/j.1462-2920.1999.00029.x
- Yanagi, Y., Hamaguchi, S., Tamaki, H., Suzuki, T., Otsuka, H., and Fujitake, N. 2003. Relation of chemical properties of soil humic acids to decolorization by white rot fungus-Coriolus consors. Soil Sci. Plant Nutr. 49, 201-206. https://doi.org/10.1080/00380768.2003.10409998
- Yang, H.C. and Whang, K.S. 2003. Phylogenetic characteristics and a quantitative evaluation of aromatic compounds utilizing bacteria in forest soil. J. Inst. Sci. Technol. 12, 67-77.
Cited by
- Metagenomic SMRT Sequencing-Based Exploration of Novel Lignocellulose-Degrading Capability in Wood Detritus from Torreya nucifera in Bija Forest on Jeju Island vol.27, pp.9, 2016, https://doi.org/10.4014/jmb.1705.05008
- 퇴비사의 효율적인 운영기술에 대한 고찰 vol.23, pp.4, 2017, https://doi.org/10.7464/ksct.2017.23.4.345
- Conversion of organic carbon from decayed native and invasive plant litter in Jiuduansha wetland and its implications for SOC formation and sequestration vol.20, pp.2, 2016, https://doi.org/10.1007/s11368-019-02464-7