DOI QR코드

DOI QR Code

Inhibition of cell wall synthesis in Cryptococcus neoformans and decrease of skin allergy induced with Alternaria alternata in mouse model by a chitinase from an inky cap

먹물버섯 키틴질 분해효소에 의한 인체유해성 Cryptococcus neoformans 세포벽 생성억제 및 Alternaria alternata에 기인한 생쥐의 피부알레르기의 감소

  • Kang, Yuri (Department of Biochemistry, Kangwon National University) ;
  • Choi, Hyoung T. (Department of Biochemistry, Kangwon National University)
  • 강유리 (강원대학교 자연과학대학 생화학과) ;
  • 최형태 (강원대학교 자연과학대학 생화학과)
  • Received : 2016.05.09
  • Accepted : 2016.06.13
  • Published : 2016.06.30

Abstract

The growth of two different fungal species, human pathogenic Cryptococcus neoformans and plant pathogenic Alternaria alternata were inhibited by a chitinase (Chi2) expressed in the autolysing tissue of Coprinellus congregatus. The cell wall thickness was reduced (up to 32%) in C. neoformans compared with that of normal cell, and polysaccharide fibers located outside of the cell wall were also severely removed. The hyphal growth of A. alternata on agar plate was stopped by the enzyme. The allergic inflammation induced by A. alternata was reduced by the enzyme reaction when compared with untreated control in a mouse model.

먹물버섯 Coprinellus congregatus의 버섯조직이 자가분해되는 시기에 발현되는 chitinase (Chi2)는 사람에게 질병을 일으키는 Cryptococcus neoformans의 세포벽 두께를 정상 세포벽의 32% 수준까지 감소시킬 뿐만 아니라, 세포 외 섬유상 물질도 제거하였다. Chi2 처리에 의하여 사람에게 알레르기를 유발하는 Alternaria alternata의 생장은 물론 생쥐 모델에서 이 균에 의한 피부알레르기 증상도 감소시켰다.

Keywords

References

  1. Amian, A.A., Papenbrock, J., Jacobsen, H.J., and Hassan, F. 2011. Enhancing transgenic pea (Pisum sativum L.) resistance against fungal diseases through stacking of two antifungal genes (chitinase and glucanase). GM Crops 2, 104-109. https://doi.org/10.4161/gmcr.2.2.16125
  2. Arora, S., Hernandez, Y., Erb-Downward, J.R., McDonald, R.A., Toews, G.B., and Huffnagle, G.B. 2005. Role of IFN-${\gamma}$ in regulating T2 immunity and the development of alternatively activated macrophages during allergic bronchopulmonary mycosis. J. Immunol. 174, 6346-6356. https://doi.org/10.4049/jimmunol.174.10.6346
  3. Baker, L.G., Specht, C.A., and Lodge, J.K. 2011. Cell wall chitosan is necessary for virulence in the opportunistic pathogen Cryptococcus neoformans. Eukaryot. Cell 10, 1364-1368.
  4. Brito, F.F., Alonso, A.M., Carnes, J., Martin-Martin, R., Fernandez-Caldas, E., Galindo, P.A., Alfaya, T., and Amo-Salas, M. 2012. Correlation between Alt a1 levels and clinical symptoms in Alternaria alternata-Monosensitized patients. J. Investig. Allergol. Clin. Immunol. 22, 154-159.
  5. Choi, H.T. and Cho, C.W. 2005. Ultrastructural studies on the autolysis of Coprinellus con-gregatus. Korean J. Microbiol. 41, 312-315.
  6. Distefano, G., Malfa, S.L., Vitale, A., Lorito, M., Deng, Z., and Gentile, A. 2008. Defence-related gene expression in transgenic lemon plants producing an antimicrobial Trichoderma harzianum endochitinase during fungal infection. Transgenic Res. 17, 873-879. https://doi.org/10.1007/s11248-008-9172-9
  7. Kang, K. and Choi, H.T. 2012. Growth inhibition of plant pathogenic fungi by a chitinase of Coprinellus congregates. Korean J. Microbiol. 48, 325-327. https://doi.org/10.7845/kjm.2012.058
  8. Kang, Y., Kim, H., and Choi, H.T. 2013. Biochemical characterization of chitinase 2 expressed during the autolytic phase of the inky cap, Coprinellus congregatus. J. Microbiol. 51, 189-193. https://doi.org/10.1007/s12275-013-2535-9
  9. Lee, K.K., MacCallum, D.M., Jacobsen, M.D., Walker, L.A., Odds, F.C., Gow, N.A.R., and Munro, C.A. 2012. Elevated cell wall chitin in Candida albicans confers echinocandin resistance in vivo. Antimicrob. Agents Chemother. 56, 208-217. https://doi.org/10.1128/AAC.00683-11
  10. Lopez-Matas, M.A., Aslava, A.P., and Diaz-Minguez, J.M. 2000. Mcchs1, a member of a chitin synthase gene family in Mucor circinelloides, is differentially expressed during dimorphism. Microbiology 40, 169-175.
  11. Lyons, T.W., Wakefield, D.B., and Cloutier, M.M. 2011. Mold and Alternaria skin test reactivity and asthma in children in Connecticut. Ann. Allergy Asthma Immunol. 106, 301-307. https://doi.org/10.1016/j.anai.2010.12.009
  12. Sharpe, R.A., Bearman, N., Thornton, C.R., Husk, K., and Osborne, N.J. 2015a. Indoor fungal diversity and asthma: a meta-analysis and systemic review of risk. J. Allergy Clin. Immunol. 135, 110-122. https://doi.org/10.1016/j.jaci.2014.07.002
  13. Sharpe, R.A., Thornton, C.R., Tyrrell, J., Nikolaou, V., and Osborne, N.J. 2015b. Variable risk of atopic disease due to indoor fungal exposure in NHANES 2005-2006. Clin. Exp. Allergy 45, 1478-1482. https://doi.org/10.1111/cea.12601
  14. Yoo, Y. and Choi, H.T. 2014. Antifungal chitinase against human pathogenic yeasts from Coprinellus congregates. Korean J. Microbiol. 52, 441-443.
  15. Zhao, J., Li, S., Jiang, T., Liu, Z., Zhang, W., Jian, G., and Qi, F. 2012. Chilling stress-the key predisposing factor for causing Alternaria alternata infection and leading to cotton (Gossypium hirsutum L.) leaf senescence. PLoS One 7, 1-11.