DOI QR코드

DOI QR Code

Electron Energy Loss Spectroscopy (EELS) Application to Mineral Formation

전자에너지 손실분광 분석법을 이용한 광물에서의 정량적 철 산화수 측정과 분석

  • Yang, Kiho (Department of Earth System Sciences, Yonsei University) ;
  • Kim, Jinwook (Department of Earth System Sciences, Yonsei University)
  • 양기호 (연세대학교 지구시스템과학과) ;
  • 김진욱 (연세대학교 지구시스템과학과)
  • Received : 2016.06.07
  • Accepted : 2016.06.18
  • Published : 2016.06.30

Abstract

The oxidation states of structural Fe in clay minerals often reflect the paleo-redox conditions of the depositional environments. It is inevitable to utilize the high resolution of transmission electron microscopy (TEM) to investigate the mechanism of mineral transformation at nano-scale. The applications of TEM- electron energy loss spectroscopy (EELS) for quantification of $Fe(III)/{\Sigma}Fe$ from the K-nontronite formation associated with structural Fe(III) reduction in nontronite under deep subseafloor environment were demonstrated. In particular, quantification of the changes in Fe-oxidation state at nanoscale is essential to understand the mechanisms of minerals formation. The procedure of EELS acquisition, quantitative determination of Fe-oxidation states, and advantages of EELS techniques were discussed.

점토 광물의 구조 내에 들어 있는 철의 산화수는 퇴적환경의 산화/환원 조건에 대한 정보를 제공하여 준다. 이러한 광물형성의 메커니즘을 밝히기 위해서는 고해상도를 가진 전자현미경을 이용한 나노 스케일 분석이 불가피하다. 투과전자현미경에 장착되어있는 전자에너지 손실분광 분석법(EELS)을 이용하여 정량적 철 산화수 분석을 논트로나이트 점토광물 구조 내 철의 환원으로 인한 K-논트로나이트의 형성의 예를 들어 설명하고자 한다. 철 산화/환원의 정량적 분석을 통하여 퇴적물의 위치에 따른 철 산화도 측정은 광물변화에 대한 연구를 용이하게 해준다. 따라서 본 논문은 전자에너지 손실분광의 분석방법 및 장점을 소개함을 목적으로 한다.

Keywords

References

  1. Calvert, C. C., Brown, A., and Brydson, R. (2005) Determination of the local chemistry of iron in inorganic and organic materials. J. Electron Spec. Relat. Phenom, 143, 173-187. https://doi.org/10.1016/j.elspec.2004.03.012
  2. Calvert, C. C., Gutzmer, J., Banks, D. A., and Rainforth, W. M. (2008) EELS characterisation and valence determination of Mn minerals from the Kalahari manganese field in South Africa. In Journal of Physics: Conference Series (Vol. 126, No. 1, p. 012045). IOP Publishing.
  3. Cave, L., Al, T., Loomer, D., Cogswell, S., and Weaver, L. (2006) A STEM/EELS method for mapping iron valence ratios in oxide minerals. Micron, 37(4), 301-309. https://doi.org/10.1016/j.micron.2005.10.006
  4. Choi, S. Y. (2013). Analysis of Scanning-Transmission Electron Microscopy (STEM). Ceramist, 16(3), 17-26.
  5. Colella, M., Lumpkin, G. R., Zhang, Z., Buck, E. C., and Smith, K. L. (2005). Determination of the uranium valence state in the brannerite structure using EELS, XPS, and EDX. Physics and chemistry of minerals, 32(1), 52-64. https://doi.org/10.1007/s00269-004-0444-5
  6. Daulton, T. L. and Little, B. J. (2006). Determination of chromium valence over the range Cr (0)-Cr (VI) by electron energy loss spectroscopy. Ultramicroscopy, 106(7), 561-573. https://doi.org/10.1016/j.ultramic.2006.02.005
  7. Garvie, L. A. J. and Craven, A. J. (1994). High-resolution parallel electron energy-loss spectroscopy of Mn L2, 3-edges in inorganic manganese compounds. Physics and Chemistry of Minerals, 21(4), 191-206. https://doi.org/10.1007/BF00202132
  8. Garvie, L. A. and Buseck, P. R. (1998). Ratios of ferrous to ferric iron from nanometre-sized areas in minerals. Nature, 396(6712), 667-670. https://doi.org/10.1038/25334
  9. Garvie, L. A., Burt, D. M., and Buseck, P. R. (2008). Nanometer-scale complexity, growth, and diagenesis in desert varnish. Geology, 36(3), 215-218. https://doi.org/10.1130/G24409A.1
  10. Kim, J. and Dong, H. (2011). Application of electron energy-loss spectroscopy (EELS) and energy-filtered transmission electron microscopy (EFTEM) to the study of mineral transformation associated with microbial Fe-reduction of magnetite. Clays and Clay Minerals, 59(2), 176-188. https://doi.org/10.1346/CCMN.2011.0590206
  11. Koo, T. H., Jang, Y. N., Kogure, T., Kim, J. H., Park, B. C., Sunwoo, D., and Kim, J. W. (2014). Structural and chemical modification of nontronite associated with microbial Fe (III) reduction: Indicators of "illitization". Chemical Geology, 377, 87-95. https://doi.org/10.1016/j.chemgeo.2014.04.005
  12. Leapman, R. D., Grunes, L. A., and Fejes, P. L. (1982). Study of the L 23 edges in the 3 d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons to theory. Physical Review B, 26(2), 614. https://doi.org/10.1103/PhysRevB.26.614
  13. Mitsunobu, S., Suzuki, Y., and Kim, J. W. (2012). Analysis of Secondary Mineral Found at Basalt sediment Interface by $\mu$-XAFS, EPMA, and TEM. IODP 331 and 329 Joint Post-cruise Meeting. 12th-14th November, Kona, Hawaii. Poster Presentation.
  14. Schmid, H. K. and Mader, W. (2006). Oxidation states of Mn and Fe in various compound oxide systems. Micron, 37(5), 426-432. https://doi.org/10.1016/j.micron.2005.12.004
  15. Taft, J. and Krivanek, O. L. (1982). Site-specific valence determination by EELS. Phys. Rev. Lett, 48, 560-563. https://doi.org/10.1103/PhysRevLett.48.560
  16. Van Aken, P. A., Liebscher, B., and Styrsa, V. J. (1998). Quantitative determination of iron oxidation states in minerals using Fe L 2, 3-edge electron energy-loss near-edge structure spectroscopy. Physics and Chemistry of Minerals, 25(5), 323-327. https://doi.org/10.1007/s002690050122
  17. Van Aken, P. A., and Liebscher, B. (2002). Quantification of ferrous/ferric ratios in minerals: new evaluation schemes of Fe L 23 electron energy- loss near-edge spectra. Physics and Chemistry of Minerals, 29(3), 188-200. https://doi.org/10.1007/s00269-001-0222-6
  18. Yang, K. and Kim, J. W. (2012). Quantitative Determination of Fe-oxidation State by Electron Energy Loss Spectroscopy (EELS). Economic and Environmental Geology, 45(2), 189-194. https://doi.org/10.9719/EEG.2012.45.2.189
  19. Yang, K., Kim, J. W., Kogure, T., Dong, H., Baik, H., Hoppie, B., and Harris, R. (2016). Smectite, illite, and early diagenesis in South Pacific Gyre subseafloor sediment. Applied Clay Science.
  20. Zhang, S., Livi, K. J., Gaillot, A. C., Stone, A. T., and Veblen, D. R. (2010). Determination of manganese valence states in (Mn3+, Mn4+) minerals by electron energy-loss spectroscopy. American Mineralogist, 95(11-12), 1741-1746. https://doi.org/10.2138/am.2010.3468

Cited by

  1. 서남극 사우스셰틀랜드 킹조지섬 바톤반도 육상 토양의 광물학적, 지화학적 특성 vol.30, pp.1, 2016, https://doi.org/10.9727/jmsk.2016.30.1.21
  2. 주사전자현미경 분석을 활용한 자연환경 퇴적시료의 생물기원구조 관찰 vol.33, pp.3, 2016, https://doi.org/10.22807/kjmp.2020.33.3.165