DOI QR코드

DOI QR Code

Smart Fog : Advanced Fog Server-centric Things Abstraction Framework for Multi-service IoT System

Smart Fog : 다중 서비스 사물 인터넷 시스템을 위한 포그 서버 중심 사물 추상화 프레임워크

  • 홍경환 (성균관대학교 진자전기컴퓨터공학과) ;
  • 박은수 (성균관대학교 IT융합학과) ;
  • 최시훈 (삼성전자 무선사업부) ;
  • 신동군 (성균관대학교 컴퓨터공학과)
  • Received : 2016.02.12
  • Accepted : 2016.04.13
  • Published : 2016.06.15

Abstract

Recently, several research studies on things abstraction framework have been proposed in order to implement the multi-service Internet of Things (IoT) system, where various IoT services share the thing devices. Distributed things abstraction has an IoT service duplication problem, which aggravates power consumption of mobile devices and network traffic. On the other hand, cloud server-centric things abstraction cannot cover real-time interactions due to long network delay. Fog server-centric things abstraction has limits in insufficient IoT interfaces. In this paper, we propose Smart Fog which is a fog server-centric things abstraction framework to resolve the problems of the existing things abstraction frameworks. Smart Fog consists of software modules to operate the Smart Gateway and three interfaces. Smart Fog is implemented based on IoTivity framework and OIC standard. We construct a smart home prototype on an embedded board Odroid-XU3 using Smart Fog. We evaluate the network performance and energy efficiency of Smart Fog. The experimental results indicate that the Smart Fog shows short network latency, which can perform real-time interaction. The results also show that the proposed framework has reduction in the network traffic of 74% and power consumption of 21% in mobile device, compared to distributed things abstraction.

최근 여러 사물 인터넷 서비스가 사물 장치를 공유하는 다중 서비스 시스템을 구현하기 위해, 다양한 구조의 사물 추상화 프레임워크들이 제시되었다. 분산형 구조는 사물 인터넷 서비스 중복 문제가 있으며, 클라우드 서버 중심 구조는 실시간 인터랙션을 할 수 없다. 또한, 기존의 포그 서버 중심 구조에서는 불완전한 인터페이스가 사용되었다. 본 논문에서는 기존 구조의 문제를 해결한 사물 추상화 프레임워크인 Smart Fog를 제안하였다. Smart Fog는 스마트 게이트웨이와 3개의 IoT 인터페이스들로 구성된다. Smart Fog는 IoTivity와 OIC 표준을 기반으로 구현되었고, 이를 이용하여 실제 임베디드 장치인 Odroid-XU3에서 프로토타입을 구현하였다. 프로토타입 상에서 실험한 결과, Smart Fog가 실시간 인터랙션이 가능할 정도로 네트워크 지연 시간이 짧고, 분산형 구조에 비해 모바일 장치에서 발생하는 네트워크 트래픽이 74%, 전력 소모가 21% 감소함을 확인하였다.

Keywords

Acknowledgement

Grant : 스마트TV 2,0 소프트혜어 플랫폼

Supported by : 정보통신기술연구진흥센터

References

  1. P. Bellagente, P. Ferrari, A. Flammini, S. Rinaldi, "Adopting IoT Framework for Energy Management of Smart Building: A Real Test-case," Proc. of 1st IEEE International Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow (RTSI), pp. 138-143, 2015.
  2. Allseen Alliance. AllJoyn Framework [Online]. Available: http://allseenalliance.org/framework (downloaded 2016, Apr. 18)
  3. Linux Foundation. IoTivity: Architecture Overview [Online]. Available https://www.iotivity.org/documentation/architecture-overview (downloaded 2016, Feb. 4)
  4. K. Hong, D. Lillethun, U. Ramachandran, B. Ottenwalder, B. Koldehofe, "Mobile Fog: A Programming Model for Large-scale Applications on The Internet of Things," Proc. of the 2nd ACM SIGCOMM Workshop on Mobile Cloud Computing, pp. 15-20, 2013.
  5. D. Willis, A. Dasgupta, S. Banerjee, "ParaDrop: A Multi-Tenant Platform to Dynamically Install Third Party Services on Wireless Gateways," Proc. of the 9th ACM Workshop on Mobility in the Evolving Internet Architecture, pp. 43-48, 2014.
  6. F. Bonomi, R. Milito, P. Natarajan, J. Zhu, "Fog Computing: A Platform for Internet of Things and Analytics," Big Data and Internet of Things: A Roadmap for Smart Environments, Vol. 546, pp. 169-186, 2014.
  7. M. Aazam, E. Huh, "Fog Computing and Smart Gateway based Communication for Cloud of Things," Proc. of the International Conference on Future Internet of Things and Cloud (FiCloud), pp. 464-470, 2014.
  8. D. H. Phan, J. Suzuki, S. Omura, K. Oba, "Toward Sensor-cloud Integration as a Service: Optimizing Three-tier Communication in Cloud-integrated Sensor Networks," Proc. of the 8th International Conference on Body Area Networks (BodyNets), pp. 355-362, 2013.
  9. Y. Xu, S. Helal, M. Thai, M. Scmalz, "Optimizing Push/Pull Envelopes for Energy-efficient Cloudsensor Systems," Proc. of the 14th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM), pp. 17-26, 2011.
  10. M. Kovatsch, M. Lanter, S. Duquennoy, "Actinium: A RESTful Runtime Container for Scriptable Internet of Things Applications," Proc. of the 3rd International Conference on the Internet of Things (IOT), pp. 135-142, 2012.
  11. Open Connectivity Foundation. (2015, Dec. 23) OIC Specification 1.0 [Online]. Available: http://openconnectivity.org/resources/specifications. (downloaded 2016, Apr. 18)
  12. T. Vlad, S. Wieland, D. Guinard, T. Bohnert, "Design and Implementation of a Gateway for Web-based Interaction and Management of Embedded Devices," Proc. of the 2nd International Workshop on Sensor Network Engineering (IWSNE), pp. 1-14, 2009.
  13. N. C. Krishnan and D. J. Cook, "Activity Recognition on Streaming Sensor Data," Pervasive and Mobile Computing, Vol. 10, pp. 138-154, 2014. https://doi.org/10.1016/j.pmcj.2012.07.003
  14. F. Bonomi, R. Milito, J. Zhu, S. Addepalli, "Fog Computing and Its Role in the Internet of Things," Proc. of the First Edition of the MCC Workshop on Mobile Cloud Computing, pp. 13-15, 2012.
  15. A. D. Wood, J. A. Stankovic, G. Virone, L. Selavo, Z. He, Q. Cao, T. Doan, Y. Wu, L. Fang, R. Stoleru, "Context-Aware Wireless Sensor Networks for Assisted Living and Residential Monitoring," Network, Vol. 22, No. 4, pp. 26-33, 2008.