DOI QR코드

DOI QR Code

Behavior of the Segment Lining due to the Middle Slab and the Lateral Pressure Coefficient in Duplex Tunnel

복층터널에서 중간슬래브와 측압계수에 따른 세그먼트 라이닝의 거동분석

  • 이호성 (한양대학교 공과대학 자원환경공학과) ;
  • 문현구 (한양대학교 공과대학 자원환경공학과)
  • Received : 2016.05.30
  • Accepted : 2016.06.24
  • Published : 2016.06.30

Abstract

We analyzed the behavior of the lining segments considering the middle slab and lateral pressure coefficients when planning the construction of a duplex tunnel for the underground network. Reviewed segment lining analysis for research, the analytical model was determined for duplex tunnel. Also reviewed the vertical load, and a load of middle slab is considered the static load and the live load by vehicles. Section force by middle slabs a load applied was mainly generated in the lower tunnel had the greatest effect on the bending moment. In addition, the bending moment acting direction changes appeared with a large variable, and the section force according to the load applied to the middle slab is relatively constant and the effect on the segment lining from the smallest section force of the lateral pressure coefficient of 1.00 was found to occur appears most significantly. As a result of this research to identify the behavior of the slab and the segment lining by the effect of the lateral pressure coefficient (K) of the duplex tunnel will be able to present a method of the duplex tunnel structure is reasonable and economical design.

대심도 지하 네트워크 구축을 위한 대심도 복층터널의 계획 시 세그먼트 라이닝의 거동을 주요 구조물인 중간슬래브와 측압계수(K)에 따라 검토하였다. 연구를 위하여 세그먼트 라이닝 해석법을 검토하였고, 대심도 복층터널에 적합한 해석 모델을 결정하였다. 또한 연직하중에 대해 검토하였고, 중간슬래브 하중은 슬래브 자중인 정하중과 차량에 의한 활하중을 고려하였다. 연구결과 중간슬래브 하중 적용에 따른 단면력은 터널 하부에 주로 발생하였고 휨모멘트의 크기에 가장 큰 영향을 미쳤다. 또한 휨모멘트 작용 방향의 변화가 큰 변수로 나타났고, 중간슬래브 하중 적용에 따른 단면력의 크기는 비교적 일정하여, 단면력의 발생이 가장 작은 측압계수 1.00에서 세그먼트 라이닝에 미치는 영향이 제일 크게 나타나는 것을 알 수 있었다. 본 연구의 결과로 복층터널의 슬라브와 측압계수(K)의 영향에 의한 세그먼트 라이닝의 거동을 파악하여 합리적이고 경제적인 복층터널 구조물 설계의 방향을 제시할 수 있을 것이다.

Keywords

References

  1. Choi, H.J., (2009) "A Study on Development of Live Load Model for Compact Vehicle-only Bridges" Dept. of Civil Engineering The Graduate School, Yonsei University.
  2. Deere, D.U., Peck, R.B., Parker, H.W., MONSEES, J.E., and SCHMIDT, B., (1970), "Design of Tunnel Support Systems: Highway Research Record", v. 339, p. 26-33.
  3. Duddeck, H., Erdmann J. (1985), "Structure design for tunnels", Tunnel82, Proceedings of the 3rd International Symposium, Brighton, 7-11 June 1982, pp. 83-91.
  4. Muirwood, A.M. (1975), "The Circular Tunnel in Elastic Ground", Geotechnique, Vol. 25, No. 1, pp. 115-127. https://doi.org/10.1680/geot.1975.25.1.115
  5. Rose, D. (1982), "Revising Terzaghi's Tunnel Rock Load Coefficients", The 23rd U.S Symposium on Rock Mechanics (USRMS), 25-27 August, Berkeley, California, pp. 953-960.
  6. Ryu, D. H., Kim, S. C., Lee, C. J., Park, J. Y., Lim, J. G., Moon, J. W. (2012), "A study on the application based on the equations of loosening loads for the optimized design of concrete lining", Journal of the Korean society for railway, pp. 7-18.
  7. Terzaghi, K. (1943), "Theoretical Soil Mechanics", John Wiley and Sons, New York.
  8. Terzaghi, K. (1946), "Rock defects and loads on tunnel support : in rock tunneling with steel supports by proctor, R. V. and white, T. L." Commercial Shearing Co, Ohio, pp. 17-99.
  9. Yoo, C.S., Jeon, H.M. (2012), “A comparative study onmethods for shield tunnel segment lining”, J. of KoreanTunnelling and Underground Space Association, Vol. 14,No. 3, pp. 159-181. https://doi.org/10.9711/KTAJ.2012.14.3.159

Cited by

  1. Performance-Based Evaluation of a Double-Deck Tunnel and Design Optimization vol.11, pp.1, 2019, https://doi.org/10.3390/su11010201