DOI QR코드

DOI QR Code

해수를 사용한 알칼리 활성화 결합재의 미세구조 및 강도 특성

Microstructure and Strength Properties of Alkali-activated Binder mixed with Sea Water

  • 전유빈 (울산과학기술원 도시환경공학부) ;
  • 오재은 (울산과학기술원 도시환경공학부)
  • Jun, Yubin (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology(UNIST)) ;
  • Oh, Jae-Eun (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology(UNIST))
  • 투고 : 2015.08.10
  • 심사 : 2016.05.03
  • 발행 : 2016.06.30

초록

본 연구에서는 플라이애시와 고로슬래그시멘트를 혼합한 결합재에 알칼리 활성화제와 해수 및 증류수를 사용하여 제작한 경화된 시편에 대해 물리적 및 미세구조 특성을 분석하였다. 플라이애시와 고로슬래그시멘트의 결합재 혼합 중량비는 6:4, 7:3 및 8:2로 하였으며, 수산화나트륨과 규산나트륨을 결합재의 각각 5wt%로 하여 활성화제로 사용하였다. 재령 3, 7 및 28일에 대해 압축강도 및 흡수율을 측정하였으며, 재령 28일에 XRD, TGA 및 MIP 시험을 실시하였다. 배합수의 종류와 관계없이, 알칼리 활성화된 결합재는 고로슬래그시멘트 혼합비가 증가할수록 ettringite 및 C-S-H의 생성량이 많아졌으며, 또한 50 nm 보다 큰 공극들이 줄어듦에 따라 압축강도가 높아지는 결과를 보여주었다. 본 연구의 모든 배합에 대해서 공통적으로 확인된 반응생성물로는 C-S-H, $Ca(OH)_2$ 및 calcite인 것으로 나타났다. 해수를 사용한 시편들과 증류수를 사용한 시편들 내에 생성된 주요 반응생성물의 차이는 hydrocalumite인 것으로 나타났다. 각각의 결합재 혼합 중량비에 대해서 증류수 및 해수 사용에 따른 시편들의 압축강도에서는 배합수로 해수가 사용되더라도 증류수가 사용된 시편과 대체적으로 유사한 강도발현을 나타내었으며, 또한 재령에 따른 강도증진율이 증류수가 사용된 시편보다 뛰어난 경우도 확인되었다. 배합수로서의 해수 사용은 해수에 함유되어 있는 염화 이온(Cl-)이 결합되면서 생성된 hydrocalumite가 공극을 매우면서 시편 내의 총공극용적을 감소시키는 것으로 나타났다.

This paper presents an investigation of the mechanical and microstructural properties on hardened samples that were synthesized using blended binder(fly ash(FA) and blast furnace slag cement(BFSC)), alkali activator and sea water or distilled water. Binders were prepared by mixing the FA and BFSC in different blend weight ratios of 6:4, 7:3 and 8:2. Sodium hydroxide and sodium silicate were used 5 wt% of binder, respectively, as an alkaline activator. The compressive strength and absorption were measured at the age of 3, 7 and 28 days, and the XRD, TGA and MIP tests were performed at the age of 28 days. An increase in the content of BFSC leads to an increase in the quantities of ettringite and C-S-H formed, regardless of the type of mixing water. And it also shows higher strength due to the reduction of pores larger than ~50 nm. All hardened samples in this study have common hydration products of C-S-H, $Ca(OH)_2$ and calcite. Hydrocalumite of all reaction products formed was only present in hardened sample mixed with sea water. For each FA/BFSC mixing ratio, the compressive strength of hardened sample mixed with sea water was similar to that mixed with distilled water. It is proposed that the slight increase of strength of samples mixed with sea water is mainly due to the presence of hydrocalumite phase containing chlorine ion, contributing to the change of total porosity and pore size distribution in samples.

키워드

참고문헌

  1. Lee, Y.S., Jang, J.G., Saito, T., and Otsuki, N., "Possibility of sea water as a greener material in concrete", Proceedings of the Korea Concrete Institute, Vol.23, No.2, 2011, pp. 767-768.
  2. Kaushik, S.K., and Islam, S., "Suitability of sea water for mixing structural concrete exposed to a marine environment", Cement & Concrete Composites, Vol.17, 1995, pp.177-185. https://doi.org/10.1016/0958-9465(95)00015-5
  3. Lee, H.J., "Seawater in the mixture", Magazine of the Korea Concrete Institute, Vol.13, No.3, 2001, pp.92-96. https://doi.org/10.22636/MKCI.2001.13.3.92
  4. Abrams, D.A., "Tests of impure waters for mixing concrete", ACI Journal Proceedings, Vol.20, No.2, pp.442-486.
  5. Wegian, F.M., "Effect of seawater for mixing and curing on structural concrete", The IES Journal Part A: Civil & Structural Engineering, Vol.3, No.4, 2010, pp.235-243. https://doi.org/10.1080/19373260.2010.521048
  6. El-Didamony, H., Amer, A.A., and Ela-ziz, H.A., "Properties and durability of alkali-activated slag pastes immersed in sea water", Ceramics International, Vol.38, 2012, pp.3773-3780. https://doi.org/10.1016/j.ceramint.2012.01.024
  7. Moon, H.Y., "Blast-furnace slag cement", Magazine of the Korea Concrete Institute, Vol.3, No.1, 1991, pp.18-23. https://doi.org/10.22636/MKCI.1991.3.1.18
  8. KS L 5210, Portland blast-furnace slag cement, 2013.
  9. Kim, M.S., Jun, Y., Lee, C., and Oh, J.E., "Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag", Cement and Concrete Research, Vol.54, 2013, pp.208-214. https://doi.org/10.1016/j.cemconres.2013.09.011
  10. Zhang, J., and Scherer, G.W., "Comparison of methods for arresting hydration of cement", Cement and Concrete Research, Vol.41, 2011, pp.1024-1036. https://doi.org/10.1016/j.cemconres.2011.06.003
  11. Puertas, F., Martinez-Ramirez, S., Alonso, S., and Vazquez, T., "Alkali-activated fly ash/slag cement strength behaviour and hydration products", Cement and Concrete Research, Vol.30, 2000, pp.1625-1632. https://doi.org/10.1016/S0008-8846(00)00298-2
  12. Palomo, A., Grutzeck, M.W., and Blanco, M.T., "Alkali-activated fly ashes: a cement for the future", Cement and Concrete Research, Vol.29, 1999, pp.1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9
  13. Zhu, H., Zhang, Z., Zhu, Y., and Tian, L., Jun, Y., "Durability of alkali-activated fly ash concrete: Chloride penetration in pastes and mortars", Construction and Builiding Materials, Vol.64, 2014, pp.51-59.
  14. Yang, T., Yao, X., and Zhang, Z., "Quantification of chloride diffusion in fly ash-slag-based geopolymers by X-ray fluorescence(XRF)", Construction and Building Materials, Vol.69, 2014, pp.109-115. https://doi.org/10.1016/j.conbuildmat.2014.07.031
  15. Ismail, I., Bernal, S.A., Provis, J.L., San Nicolas, R., Brice, D.G., Kilcullen, A.R., Hamdan, S., and Van Deventer, J.S. J., "Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes", Construction and Building Materials, Vol.48, 2013, pp.1187-1201. https://doi.org/10.1016/j.conbuildmat.2013.07.106
  16. Grishchenko, R.O., Emelina, A.L., and Makarov, P.Y., "Thermodynamic properties and thermal behavoir of Friedel's salt", Thermochimica Acta, Vol.570, 2013, pp.74-79. https://doi.org/10.1016/j.tca.2013.07.030
  17. Tatematsu, H., Nakamura, T., Koshimizu, H., Morishita, T., and Kotaki, H., "Cement-additive for inhibiting concrete-deterioration", Patent US5435846 A, 1995.
  18. Kim, J.Y., and Kim, W.K., "Durability of epoxy-modified mortars containing nitrite-type hydrocalumite", Proceedings of the Korea Concrete Institute, Vol.25, No.2, 2013, pp.215-216.
  19. Paat, A., and Traksmaa, R., "Investigation of mineral composition of oil shale ash stored in ash fields of the balti power plant", Oil Shale, Vol.22, No.3, 2005, pp.445-451.
  20. Palmer, S.J., Smith, M.K., and Frost, R.L., "The effect of high concentrations of calcium hydroxide in neutralised synthetic supernatant liquor-Implications for alumina refinery residues", Journal of Industrial and Engineering Chemistry, Vol.17, 2011, pp.56-61. https://doi.org/10.1016/j.jiec.2010.10.009
  21. Hashem, F.S., Amin, M.S., and El-Gamal, S.M.A., "Improvement of acid resistance of Portland cement pastes using rice husk ash and cement kiln dust as additives", Journal of thermal analysis and calorimetry, Vol.111, 2013, pp.1391-1398. https://doi.org/10.1007/s10973-012-2458-4
  22. Bakolas, A., Aggelakopoulou, E., Moropoulou, A., and Anagnostopoulou, S., "Evaluation of pozzolanic activity and physicomechanical characteristics in metakaolin-lime pastes", Journal of Thermal Analysis and Calorimetry, Vol.84, 2006, pp.157-163. https://doi.org/10.1007/s10973-005-7262-y
  23. Sha, W., and Pereira, G.B., "Differential scanning calorimetry study of hydrated ground granulated blast-furnace slag", Cement and Concrete Research, Vol.31, 2001, pp.327-329. https://doi.org/10.1016/S0008-8846(00)00472-5
  24. Sha, W., "Differential scanning calorimetry study of the hydration products in Portland cement pastes with metakaolin replacement", Proceedings of the International Conference on Advances in Building Technology, Vols.I, II, 2002, pp. 881-888.
  25. Orsini, P.G., Buri, A., and Marotta, A., "Devitrification of glasses in the akermanite-gehlenite system", Journal of the American Ceramic Society, Vol.58, 1975, pp.306-311. https://doi.org/10.1111/j.1151-2916.1975.tb11483.x
  26. Yu, Q.L., and Brouwers, H.J.H., "Gypsum: an investigation of microstructure and mechanical properties", Proceedings 8th fib International PhD Symposium in Civil Engineering, 2010, pp.20-23.
  27. Vassileva, C.G., and Vassilev, S.V., "Behaviour of inorganic matter during heating of Bulgarian coals: 1. Lignites", Fuel Processing Technology, Vol.86, 2005, pp.1297-1333. https://doi.org/10.1016/j.fuproc.2005.01.024
  28. Bakolas, A., Aggelakopoulou, E., Moropoulou, A., and Anagnostopoulou, S., "Evaluation of pozzolanic activity and physicomechanical characteristics in metakaolin-lime pastes", Journal of Thermal Analysis and Calorimetry, Vol.84, No.1, 2006, pp.157-163. https://doi.org/10.1007/s10973-005-7262-y
  29. Park, H., Jeong, Y., Jun, Y., Jeong J.H., and Oh, J.E., "Strength enhancement mechanism in clinker-free CaO-GGBFS system by addition of gypsum", Proceedings of the Korea Concrete Institute, Vol.27, No.1, 2015, pp.497-498.
  30. Rattanasak, U., Pankhet, K., and Chindaprasirt, P., "Effect of chemical admixtures on properties of high-calcium fly ash geopolymer", International Journal of Minerals, Metallurgy, and Materials, Vol.18, No.3, 2011, pp.364-369. https://doi.org/10.1007/s12613-011-0448-3
  31. Pane, I., and Hansen, W., "Investigation of blended cement hydration by isothermal calorimetry and thermal analysis", Cement and Concrete Research, Vol.35, 2005, pp.1155-1164. https://doi.org/10.1016/j.cemconres.2004.10.027
  32. Jeong, Y., Park, H., Jun, Y., Jeong, J.H., and Oh, J.E., "Microstructural verification of the strength performance of ternary blended cement systems with high volumes of fly ash and GGBFS", Construction and Building Materials, Vol.95, 2015, pp.96-107. https://doi.org/10.1016/j.conbuildmat.2015.07.158
  33. Provis, J.L., Myers, R.J., White, C.E., Rose, V., and Van Deventer, J.S.J., "X-ray microtomography shows pore sturcture and tortuosity in alkali-activated binders", Cement and Concrete Research, Vol.42, 2012, pp.855-864. https://doi.org/10.1016/j.cemconres.2012.03.004
  34. Mehta, P.K., and Monteiro, P.J.M., Concrete: microstructure, properties, and materials: McGraw-Hill New York, 2006.
  35. Jun, Y., and Oh, J.E., "Use of gypsum as a preventive measure for strength deterioration during curing in Class F fly ash geopolymer system", Materials, Vol.8, 2015, pp. 3053-3067. https://doi.org/10.3390/ma8063053