DOI QR코드

DOI QR Code

120, 180 MPa 강섬유 보강 초고성능 콘크리트에 정착된 확대머리철근의 정착강도

Anchorage Strength of Headed Bars in Steel Fiber-Reinforced UHPC of 120 and 180 MPa

  • 심혜정 (인천대학교 도시건축학부) ;
  • 천성철 (인천대학교 도시건축학부) ;
  • 최석환 (국민대학교 건설시스템공학부)
  • Sim, Hye-Jung (Division of Architecture and Urban design, Incheon National University) ;
  • Chun, Sung-Chul (Division of Architecture and Urban design, Incheon National University) ;
  • Choi, Sokhwan (Dept. of Civil and Environmental Engineering, Kookmin University)
  • 투고 : 2016.01.27
  • 심사 : 2016.03.03
  • 발행 : 2016.06.30

초록

강섬유 보강 초고성능콘크리트(SUPER Concrete)는 일반 콘크리트에 비해 높은 압축강도와 인장강도를 지닌다. 이러한 특성으로 SUPER Concrete로 제작된 부재는 단면을 크게 줄일 수 있고, 확대머리철근의 정착강도가 향상될 것으로 기대된다. 이 연구에서는 120 MPa, 180 MPa SUPER Concrete로 제작된 외부 보-기둥 접합부에 $4d_b$, $6d_b$의 정착길이를 갖는 확대머리철근의 정착 성능을 평가하였다. 모든 실험체에서 600 MPa 이상의 실제 항복강도가 발현된 후 일부 실험체에서 측면파열파괴가 발생되었다. 확대머리철근의 정착강도가 매우 높아 철근이 파단되는 경우도 있었다. 설계기준강도 120 MPa 이상 SUPER Concrete에 정착된 확대머리철근은 $4d_b$의 짧은 정착길이로 콘크리트구조기준에서 허용하는 철근의 최대 설계기준강도 600 MPa를 발현할 수 있는 것으로 평가되었다. 기존에 개발된 일반 콘크리트에 정착된 확대머리철근의 측면파열파괴강도 평가식과 현행 콘크리트구조 기준의 확대머리철근 정착길이 설계식은 실험값을 과소평가하였다. 일반콘크리트에서 개발된 평가식은 SUPER Concrete의 높은 인장강도 특성을 반영하지 못하기 때문으로 분석된다. 확대머리철근 정착강도를 $(f_{ck})^{\alpha}$에 비례한다고 가정하고 실험결과를 회귀분석하여, SUPER Concrete 압축강도의 0.14승에 비례하는 정착강도 평가식이 개발되었다. 40개 실험 자료에 대한 [실험값]/[예측 값]의 평균은 1.01, 변동계수는 5%였다.

Ultra-High-Performance Steel Fiber-Reinforced Concrete (SUPER Concrete) exhibits improved compressive and tensile strengths far superior to those of conventional concrete. These characteristics can significantly reduce the cross sectional area of the member and the anchorage strength of a headed bar is expected to be improved. In this study, the anchorage strengths of headed bars with $4d_b$ or $6d_b$ embedment length were evaluated by simulated exterior beam-column joint tests where the headed bars were used as beam bars and the joints were cast of 120 or 180 MPa SUPER Concrete. In all specimens, the actual yield strengths of the headed bars over 600 MPa were developed. Some headed bars were fractured due to the high anchorage capacity in SUPER Concrete. Therefore, the headed bar with only $4d_b$ embedment length in 120 MPa SUPER Concrete can develop a yield strength of 600 MPa which is the highest design yield strength permitted by the KCI design code. The previous model derived from tests with normal concrete and the current design code underestimate the anchorage capacity of the headed bar anchored in SUPER Concrete. Because the previous model and the current design code do not consider the effects of the high tensile strength of SUPER Concrete. From a regression analysis assuming that the anchorage strength is proportional to $(f_{ck})^{\alpha}$, the model for predicting anchorage strength of headed bars in SUPER Concrete is developed. The average and coefficient of variation of the test-to-prediction values are 1.01 and 5%, respectively.

키워드

참고문헌

  1. Hong, K.N., Kang, S.T., Kim, S.W., Park, J.J., and Han, S.H., "Material properties of air-cured ultra-high-performance steel-fiber-reinforced concrete at early ages," International Journal of the Physical Sciences, Vol.5, No.7, 2011, pp. 2622-2634.
  2. Karl, K.-W., Lee, D.H., Hwang, J.-H., Kim, K.S., and Choi, I.-S., "Revision on material strength of steel fiber-reinforced concrete," International Journal of Concrete Structures and Materials, Vol.5, No.2, 2011, pp.87-96. https://doi.org/10.4334/IJCSM.2011.5.2.87
  3. Park, S.H., Kim, D.J., Ryu, G.S., and Koh, K.T., "Tensile behavior of ultra high performance hybrid fiber reinforced concrete," Cement and Concrete Composites, Vol.34, No.2, 2012, pp.172-184. https://doi.org/10.1016/j.cemconcomp.2011.09.009
  4. Yang, I.H., Cho, C.B., and Kim, B.S., "Flexural response predictions for ultra-high performance fiber-reinforced concrete beams," Magazine of Concrete Research, Vol.64, No.2, 2012, pp.113-127. https://doi.org/10.1680/macr.10.00115
  5. Wallace, J.W., "Headed Reinforcement: A Viable Option," Concrete International, V. 19, No. 12, Dec. 1997, pp.47-53.
  6. Berner, D.E., and Hoff, G.C., "Head Reinforcement in Disturbed Strain Regions of Concrete Members," Concrete International, V. 16, No. 1, Jan. 1994, pp.48-52.
  7. Wallance, J.W.; McConnell, S.W.; Gupta, P.; and Cote P.A., "Use of Headed Reinforcement in Beam-Column Joints Subjected to Earthquake Loads," ACI Structural Journal, V. 95, No. 5, Sept.-Oct., 1998, pp.590-606.
  8. Korea Concrete Institute, Concrete Design Code, Kimoondang Publishing Company, Seoul, 2012, 342 pp.
  9. Marques, J. L. G. and Jirsa, J. O., "A Study of Hooked Bar Anchorages in Beam-Column Joints," ACI Journal, Proceedings, Vol.72, No.5, 1975, pp.198-209.
  10. Choi, C. M., "Strength of Headed Bars Anchored in CCT Nodes," Master thesis of Mokpo National University, Feb. 2014, 70 pp.
  11. Thompson, M.K., Jirsa, J.O., and Breen, J.E., "Behavior and Capacity of Headed Reinforcement," ACI Structural Jounal, Vol.103, No.4, Jul.-Aug., 2006, pp.522-530.
  12. ACI Committee 318, "Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary," ACI, Farmington Hills, Mich, USA, 2014, 492 pp.
  13. Furche, J. and Eligehausen, R., "Lateral Blow-Out Failure of Headed Studs Near a Free Edge," Anchors in Concrete-Design and Behavior, SP-130, 1991, American Concrete Institute, Farmington Hills, MI. USA, pp.235-252.
  14. Korea Institute of Civil Engineering and Building Technology, "Design Guidelines for K-UHPC," Feb. 2014, 90 pp.
  15. ACI Committee 352, "Recommendations for Design of Beam-Column Connections in Monolithic Reinforced Concrete Structures," ACI, Farmington Hills, Mich., USA, 2002, 38 pp.
  16. KS B 0802:2003, Method of Tensile Test for Metallic Materials, Korean Agency for Technology and Standards, 2003, 7 pp.

피인용 문헌

  1. Headed bars in simulated exterior beam–column joints of UHPFRC vol.70, pp.19, 2018, https://doi.org/10.1680/jmacr.17.00355
  2. Development Length of Headed Bar Based on Nonuniform Bond Stress Distribution pp.0889-3241, 2019, https://doi.org/10.14359/51712274