DOI QR코드

DOI QR Code

A Study on the Integrity Assessment of Bare Concrete Bridge Deck based on the Attenuation of Radar Signals

레이더 신호의 감쇠특성을 고려한 일체식 콘크리트 교량 바닥판의 상태평가 방법 고찰

  • Received : 2016.03.15
  • Accepted : 2016.05.02
  • Published : 2016.07.01

Abstract

The signal characteristic of radar wave on concrete decks is determined by the attenuation of the radar due to the conversion of EM(Electromagnetic) energy to thermal energy through electrical conduction, dielectric relaxation, scattering, and geometric spreading. In this study, it is found that the attenuation of radar signal received on top rebars in bare deck concrete with 2 way travel time shows a general decreasing linear trend because of its same relative permittivity and conductivity. The radar signal after depth-normalization, can then be interpreted as being principally influenced by the content of chlorides penetrating cover concrete, which caused corrosion of rebars in bridge decks.

전자기파가 콘크리트 교량 바닥판을 통과할 때 에너지 손실 메카니즘에 의해 신호의 감쇠가 발생하며, 이는 콘크리트의 상대유전율과 전도도, 그리고 지리적 산란 손실의 영향에 따른 것으로 알려져 있다. 본 연구에서는 건전한 콘크리트에 대해서는 레이더파의 감쇠가 상부철근의 깊이와 선형관계에 있다는 점에 착안하여, 일체식 콘크리트 교량 바닥판에서 상태평가 지표로서의 레이더파의 신호감쇠를 실 교량에 적용하여 그 유용성에 대해 검토하였다. 연구결과, 손상된 콘크리트 교량 바닥판에서는 건전한 상태에 비해 상대적으로 큰 감쇠가 일어나며, 레이더 수신파의 총감쇠량에서 반사체의 깊이에 대해 선형적 관계인 부분을 제거하고 난 보정감쇠량은 일체식 콘크리트 교량 바닥판의 상태평가에 유용한 것으로 나타났다. 실제 공용 중인 손상 교량 바닥판에 적용한 결과, 제안된 방법은 교면에서 상부철근까지의 콘크리트 상태를 신뢰성 있게 평가할 수 있으며, 특히, 일체식 바닥판의 주손상요인인 상부철근의 부식환경을 간접적으로 평가할 수 있는 것으로 판단된다.

Keywords

References

  1. ASTM C 876 (2009), Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete, ASTM International, West Conshohocken, PA.
  2. ASTM D 6432 (2011), Standard Guide for using the Surface Ground Penetrating Radar Method for Subsurface Investigation, ASTM International, West Conshohocken, PA.
  3. Park, J., Lee, S., Kim, J., Park, C., and Lee, D. (2011), The Prediction of Remaining Life of Concrete Bridge Decks using the Reliability Analysis, International Journal of Highway Engineering, Korea Society of Road Engineers, 13(4), 71-79.
  4. Parrillo, R., Roberts, R., and Haggan, A. (2006), Bridge Deck Condition Assessment using Ground Penetrating Radar, Proceedings of the ECNDT, Berlin, German, 2526, 112.
  5. Shu, J., Lee, I., and Rhee, J. (1998), Condition Evaluation of Concrete Bridge Decks, Highway Research Center, Korea Highway Corporation, Report No. 98-67-65, 13.
  6. Shu, J., Rhee, J., Jung, J., Lee, J., Choi, M., and Lee, J. (2013), A Study for Management Practice of Bridge Decks based on the Deterioration Factors, Proceedings of the KCI Fall Conference, Korea Concrete Institute, 25(2), 783-784.
  7. Shu, J., Rhee, J., Park, C., and Shin, J. (2005), Evaluation of Concrete Bridge Deck using GPR mounted on the Vehicle, Journal of The Korea Institute for Structural Maintenance Inspection, Korea Institute for Structural Maintenance Inspection, 9(3), 29-37.
  8. Shu, J., Rhee, J., Seo, S., and Shin, J. (2004), Condition Evaluation of Bare Concrete Bridge Decks, A Journal of The Korea Institute for Structural Maintenance Inspection, Korea Institute for Structural Maintenance Inspection, 8(3), 317-224.

Cited by

  1. Seasonal Variation and Age-related Changes in the Relative Permittivity of Concrete Bridge Decks on Korea Expressways vol.12, pp.1, 2018, https://doi.org/10.1186/s40069-018-0239-6
  2. Evaluation of the Depth of Deteriorations in Concrete Bridge Decks with Asphalt Overlays Using Air-Coupled GPR: A Case Study from a Pilot Bridge on Korean Expressway vol.13, pp.1, 2019, https://doi.org/10.1186/s40069-018-0327-7