DOI QR코드

DOI QR Code

The effects of sodium fluoride on oral normal cell cultured in vitro

체외에서 배양된 구강 내 정상세포에 불화나트륨이 미치는 영향

  • Choi, Byul-Bora (Department of Dental Hygiene, Division of Health Sciences, Dongseo University) ;
  • Kim, Da-Hye (Department of Dental Hygiene, Division of Health Sciences, Dongseo University) ;
  • Kim, Ji-Young (Department of Dental Hygiene, Kyungnam College of Information & Technology) ;
  • Park, Sang-Rye (Department of Dental Hygiene, Kyungnam College of Information & Technology)
  • Received : 2016.03.25
  • Accepted : 2016.06.24
  • Published : 2016.06.30

Abstract

Objectives: Fluoride is widely used in the prevention and control of dental caries. The purpose of this study is to examine the biological effects of Sodium fluoride on the proliferation of oral normal cell in vitro(MDPC-23, HaCaT, HGF-1 cells). Methods: The proliferation of normal cells and the cyto-skeletal change of normal cells were assessed by WST-1 assay and F-actin stain assay. The statistical significances of the resulting data were analyzed using SPSS(Window 12.0). Results: The sodium fluoride(0-12 mM) treatment decreased the cell viability in a dose and time dependent manner: HaCaT(6 h): $100{\pm}0$, $98{\pm}0.39$, $82{\pm}2.68$, $75{\pm}0.83$, $69{\pm}1$, $67{\pm}1.42%$(p<0.005); HaCaT(24 h): $100{\pm}0$, $98{\pm}1.85$, $54{\pm}0.64$, $43{\pm}0.4$, $38{\pm}0.32$, $36{\pm}0.13%$(p<0.006), MDPC-23(6 h): $100{\pm}0$, $93{\pm}1.48$, $85{\pm}0.28$, $82{\pm}1.58$, $79{\pm}1.48$, $76{\pm}1.93%$(p<0.009); MDPC-23(24 h): $100{\pm}0$, $91{\pm}1.26$, $58{\pm}0.65$, $49{\pm}1$, $44{\pm}0.74$, $2{\pm}0.05%$(p<0.005), HGF-1(6 h): $100{\pm}0$, $97{\pm}2.93$, $89{\pm}5$, $71{\pm}5.42$, $58{\pm}4.82$, $43{\pm}3.47%$(p<0.009); HGF-1(24 h): $100{\pm}0$, $97{\pm}2.05$, $73{\pm}1.73$, $22{\pm}1.61$, $14{\pm}1.73$, $7{\pm}0.85%$(p<0.005). Thus, changes in cell morphology and disruption of filamentous(F)-actin organization were observed in higher concentration. Conclusions: These results suggest that higher concentrations of fluoride lead to a reduce the number of cells and morphology change of normal cell.

Keywords

References

  1. Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet 2005; 366: 1809-20. https://doi.org/10.1016/S0140-6736(05)67728-8
  2. Lee SH, Kim JM, Kim S, Jeong TS. Anticariogenic effect of fluoride varnishes. J Korean Acad Pediatr Dent 2008; 35(1): 83-91.
  3. Chesters R K, Huntington E, Burchell C K, Stephen K W. Effect of oral care habits on caries in adolescents. Caries Res 1992; 26: 299-304. https://doi.org/10.1159/000261456
  4. Song JH, Kim YJ, Kim JW, Jang KT, Kim CC, Hahn SH, Lee SH. Remineralization effect of commercially available anticariogenic. J Korean Acad Pediatr Dent 2008; 35(2): 287-96.
  5. Whitford, G.M. The physiological and toxicological characteristics of fluoride. J Dent Res 1990; 69: 539-49. https://doi.org/10.1177/00220345900690S108
  6. Bartlett JD, Dwyer SE, Beniash E, Skobe Z, Payne-Ferreira TL. Fluorosis: a new model and new insights. J Dent Res 2005; 84(9): 832-6. https://doi.org/10.1177/154405910508400910
  7. Lee JH, Jung JY, Jeong YJ, Park JH, Yang KH, Nam KC et al. Involvement of both mitochondrial- and death receptor-dependent apoptotic pathways regulated by Bcl-2 family in sodium fluoride-induced apoptosis of the human gingival fibroblasts. Toxicology 2008; 243(3): 340-7. https://doi.org/10.1016/j.tox.2007.10.026
  8. Li 1, Xue Y, Zhang W, Teng F, Sun Y, Qu T, Chen X, Cheng X, Song B, Luo W, Yu Q. Sodium fluoride induces apoptosis in odontoblasts via a JNK-dependent mechanism. Toxicology 2013; 308: 138-45. doi: 10.1016/j.tox.2013.03.016.
  9. Yang T, Zhang Y, Li Y, Hao Y, Zhou M, Dong N, Duan X. High amounts of fluoride induce apoptosis/cell death in matured ameloblast-like LS8 cells by downregulating Bcl-2. Arch Oral Biol 2013; 58(9): 1165-73. doi: 10.1016/j.archoralbio.2013.03.016.
  10. Eckert RL. Structure, function, and differentiation of the keratinocyte. Physiol Rev 1989; 69(4): 1316-46. https://doi.org/10.1152/physrev.1989.69.4.1316
  11. Kim DH, Kim HJ, Jeong MJ, Son HH, Park JC. Expression and functional characterization of odentoblast-derived gene: OD314. J Korean Acad Conserv Dent 2004; 29(4): 399-408. https://doi.org/10.5395/JKACD.2004.29.4.399
  12. Bowers GM, Schallhorn RG, Mellonig JT. Histologic evaluation of new attachment in human intrabony defect. A literature review. J Periodontol 1982; 53: 509-514. https://doi.org/10.1902/jop.1982.53.8.509
  13. Kanduti D, Sterbenk P, Artnik B. Fluoride: A Review of use and effecs on health. Mater Sociomed 2016; 28(2): 133-7. http://dx.doi:10.5455/msm.2016.28.133-137.
  14. Huo L1, Liu K, Pei J, Yang Y, Ye Y, Liu Y, Sun J, Han H, Xu W, Gao Y. Fluoride promotes viability and differentiation of osteoblast-like Saos-2 cells via BMP/Smads signaling pathway. Biol Trace Elem Res 2013; 155(1): 142-9. doi: 10.1007/s12011-013-9770-0.
  15. Oh NR, Park EJ, Yoon SU. Fluoride concentration in the finger nails of dental hygiene and nonhealth-relate some female students. J Korean Soc Dent Hyg 2016; 16(1): 147-53. http://dx.doi.org/10.13065/jksdh.2016.16.01.147
  16. Kim KH, Ha MO, Hong NH, Cho MJ. Effect of fluoride application after dental prophylaxis by the type of dental floss. J Korean Soc Dent Hyg 2016; 16(1): 77-83. http://dx.doi.org/10.13065/jksdh.2016.16.01.77
  17. Kim JW, Lee JA, Lee KY. Enamel strengthening effect of the dental fluoride compound. J Korean Soc Dent Hyg 2010; 10(4): 757-64.
  18. World Health Organization. Prevention methods and programmes for oral diseases: report of a WHO expert comittee. Geneva: World Health Organization 1984; 6: 12-20.
  19. Song YH, Moon HS, Paik DI, Kim JB. A prospective study on the effect of water fluoridation in the Republic of Korea. J Korean Acad Dent Health 1992; 16: 452-74.
  20. Satoh T, Takayama F, Hashimoto K. Induction of apoptosis of human oral tumor cell lines by sodium fluoride(in Japanese). Meikai Univ Dent J 2003; 32: 97-108.
  21. Karube H, Nishitai G, Inageda K, Kurosu H, Matsuoka M. NaF activates MAPKs and induces apoptosis in odontoblast-like cells. Dent Res 2009; 88(5): 461-5. http://dx.doi:10.1177/0022034509334771.
  22. Hall A. Rho GTPases and the actin cytoskeleton. Science 1998; 279(5350): 509-14. https://doi.org/10.1126/science.279.5350.509
  23. Stricker J, Falzone T, Gardel ML. Mechanics of the F-actin cytoskeleton. J Biomech 2010; 43(1): 9-14. https://doi.org/10.1016/j.jbiomech.2009.09.003