References
- Holland GN. Ocular toxoplasmosis: a global reassessment. Part I: epidemiology and course of disease. Am J Ophthalmol 2003;136:973-988.
- Thirumudi I, Vetrivel U, Mahalakshmi B, K LT, Hn M. Insights on drug targeting of Toxoplasma gondii host invasion proteins: a review. Asian J Pharm Clin Res 2015;8:52-57.
- Tenter AM, Heckeroth AR, Weiss LM. Toxoplasma gondii: from animals to humans. Int J Parasitol 2000;30:1217-1258. https://doi.org/10.1016/S0020-7519(00)00124-7
- Kim K, Weiss LM. Toxoplasma gondii: the model apicomplexan. Int J Parasitol 2004;34:423-432. https://doi.org/10.1016/j.ijpara.2003.12.009
- Hehl AB, Basso WU, Lippuner C, Ramakrishnan C, Okoniewski M, Walker RA, et al. Asexual expansion of Toxoplasma gondii merozoites is distinct from tachyzoites and entails expression of non-overlapping gene families to attach, invade, and replicate within feline enterocytes. BMC Genomics 2015;16:66. https://doi.org/10.1186/s12864-015-1225-x
- Aikawa M, Miller LH, Johnson J, Rabbege J. Erythrocyte entry by malarial parasites: a moving junction between erythrocyte and parasite. J Cell Biol 1978;77:72-82. https://doi.org/10.1083/jcb.77.1.72
- Alexander DL, Mital J, Ward GE, Bradley P, Boothroyd JC. Identification of the moving junction complex of Toxoplasma gondii: a collaboration between distinct secretory organelles. PLoS Pathog 2005;1:e17. https://doi.org/10.1371/journal.ppat.0010017
- Besteiro S, Dubremetz JF, Lebrun M. The moving junction of apicomplexan parasites: a key structure for invasion. Cell Microbiol 2011;13:797-805. https://doi.org/10.1111/j.1462-5822.2011.01597.x
- Straub KW, Peng ED, Hajagos BE, Tyler JS, Bradley PJ. The moving junction protein RON8 facilitates firm attachment and host cell invasion in Toxoplasma gondii. PLoS Pathog 2011;7:e1002007. https://doi.org/10.1371/journal.ppat.1002007
- Besteiro S, Michelin A, Poncet J, Dubremetz JF, Lebrun M. Export of a Toxoplasma gondii rhoptry neck protein complex at the host cell membrane to form the moving junction during invasion. PLoS Pathog 2009;5:e1000309. https://doi.org/10.1371/journal.ppat.1000309
- Lamarque M, Besteiro S, Papoin J, Roques M, Vulliez-Le Normand B, Morlon-Guyot J, et al. The RON2-AMA1 interaction is a critical step in moving junction-dependent invasion by apicomplexan parasites. PLoS Pathog 2011;7:e1001276. https://doi.org/10.1371/journal.ppat.1001276
- Henderson KA, Streltsov VA, Coley AM, Dolezal O, Hudson PJ, Batchelor AH, et al. Structure of an IgNAR-AMA1 complex: targeting a conserved hydrophobic cleft broadens malarial strain recognition. Structure 2007;15:1452-1466. https://doi.org/10.1016/j.str.2007.09.011
- Crawford J, Tonkin ML, Grujic O, Boulanger MJ. Structural characterization of apical membrane antigen 1 (AMA1) from Toxoplasma gondii. J Biol Chem 2010;285:15644-15652. https://doi.org/10.1074/jbc.M109.092619
- Harvey KL, Yap A, Gilson PR, Cowman AF, Crabb BS. Insights and controversies into the role of the key apicomplexan invasion ligand, apical membrane antigen 1. Int J Parasitol 2014;44:853-857. https://doi.org/10.1016/j.ijpara.2014.08.001
- Collins CR, Withers-Martinez C, Hackett F, Blackman MJ. An inhibitory antibody blocks interactions between components of the malarial invasion machinery. PLoS Pathog 2009;5:e1000273. https://doi.org/10.1371/journal.ppat.1000273
- Richard D, MacRaild CA, Riglar DT, Chan JA, Foley M, Baum J, et al. Interaction between Plasmodium falciparum apical membrane antigen 1 and the rhoptry neck protein complex defines a key step in the erythrocyte invasion process of malaria parasites. J Biol Chem 2010;285:14815-14822. https://doi.org/10.1074/jbc.M109.080770
- Tonkin ML, Roques M, Lamarque MH, Pugniere M, Douguet D, Crawford J, et al. Host cell invasion by apicomplexan parasites: insights from the co-structure of AMA1 with a RON2 peptide. Science 2011;333:463-467. https://doi.org/10.1126/science.1204988
- Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 2006;49:6177-6196. https://doi.org/10.1021/jm051256o
- Lagunin A, Stepanchikova A, Filimonov D, Poroikov V. PASS: prediction of activity spectra for biologically active substances. Bioinformatics 2000;16:747-748. https://doi.org/10.1093/bioinformatics/16.8.747
- Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 2015;10:449-461. https://doi.org/10.1517/17460441.2015.1032936
- DuBay KH, Hall ML, Hughes TF, Wu C, Reichman DR, Friesner RA. Accurate force field development for modeling conjugated polymers. J Chem Theory Comput 2012;8:4556-4569. https://doi.org/10.1021/ct300175w
- Barth E, Kuczera K, Leimkuhler B, Skeel RD. Algorithms for constrained molecular dynamics. J Comput Chem 1995;16:1192-1209. https://doi.org/10.1002/jcc.540161003
- Bulatov VV, Rhee M, Cai W. Periodic boundary conditions for dislocation dynamics simulations in three dimensions. MRS Proc 2000;653:Z1-Z3.
- Harvey MJ, De Fabritiis G. An implementation of the smooth particle mesh Ewald method on GPU hardware. J Chem Theory Comput 2009;5:2371-2377. https://doi.org/10.1021/ct900275y
- Berendsen HJ, Postma JP, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with coupling to an external bath. J Chem Phys 1984;81:3684-3690. https://doi.org/10.1063/1.448118
- Damm KL, Carlson HA. Gaussian-weighted RMSD superposition of proteins: a structural comparison for flexible proteins and predicted protein structures. Biophys J 2006;90:4558-4573. https://doi.org/10.1529/biophysj.105.066654
- Maiorov VN, Crippen GM. Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins. J Mol Biol 1994;235:625-634. https://doi.org/10.1006/jmbi.1994.1017
- Fuglebakk E, Echave J, Reuter N. Measuring and comparing structural fluctuation patterns in large protein datasets. Bioinformatics 2012;28:2431-2440. https://doi.org/10.1093/bioinformatics/bts445
- Lobanov MY, Bogatyreva NS, Galzitskaya OV. Radius of gyration as an indicator of protein structure compactness. Mol Biol 2008;42:623-628. https://doi.org/10.1134/S0026893308040195
- Srinivasan P, Beatty WL, Diouf A, Herrera R, Ambroggio X, Moch JK, et al. Binding of Plasmodium merozoite proteins RON2 and AMA1 triggers commitment to invasion. Proc Natl Acad Sci U S A 2011;108:13275-13280. https://doi.org/10.1073/pnas.1110303108
- Alam A. Bioinformatic identification of peptidomimetic-based inhibitors against Plasmodium falciparum antigen AMA1. Malar Res Treat 2014;2014:642391.
- Tonkin ML, Crawford J, Lebrun ML, Boulanger MJ. Babesia divergens and Neospora caninum apical membrane antigen 1 structures reveal selectivity and plasticity in apicomplexan parasite host cell invasion. Protein Sci 2013;22:114-127. https://doi.org/10.1002/pro.2193
- Carugo O. How root-mean-square distance (r.m.s.d.) values depend on the resolution of protein structures that are compared. J Appl Cryst 2003;36:125-128. https://doi.org/10.1107/S0021889802020502
-
Mahadevi AS, Sastry GN. Cation-
${\pi}$ interaction: its role and relevance in chemistry, biology, and material science. Chem Rev 2013;113:2100-2138. https://doi.org/10.1021/cr300222d -
Scrutton NS, Raine AR. Cation-
${\pi}$ bonding and amino-aromatic interactions in the biomolecular recognition of substituted ammonium ligands. Biochem J 1996;319:1-8. https://doi.org/10.1042/bj3190001
Cited by
- Probing the intermolecular interactions of PPARγ-LBD with polyunsaturated fatty acids and their anti-inflammatory metabolites to infer most potential binding moieties vol.16, pp.1, 2017, https://doi.org/10.1186/s12944-016-0404-3
- IgG Avidity Test in Congenital Toxoplasmosis Diagnoses in Newborns vol.6, pp.2, 2017, https://doi.org/10.3390/pathogens6020026
- : An integrative pharmacoinformatics approach pp.07302312, 2018, https://doi.org/10.1002/jcb.27553
- Characterization of a novel secretory spherical body protein in Babesia orientalis and Babesia orientalis-infected erythrocytes vol.11, pp.1, 2018, https://doi.org/10.1186/s13071-018-3018-y