DOI QR코드

DOI QR Code

Eco-friendly Control of Harmful Algal Bloom Species Using Biological Predators

포식성 천적생물을 이용한 친환경 유해조류 제어기술 개발

  • Kim, Sok (Division of Environmental Science & Ecological Engineering, Korea University) ;
  • Lee, Changsu (Department of Bioprocess Engineering, Chonbuk National University) ;
  • Vo, Thi-Thao (Department of Bioactive Material Sciences, Chonbuk National University) ;
  • Han, Sang-Il (Division of Environmental Science & Ecological Engineering, Korea University) ;
  • Choi, Yoon-E (Division of Environmental Science & Ecological Engineering, Korea University)
  • 김석 (고려대학교 환경생태공학부) ;
  • 이창수 (전북대학교 생물공정공학과) ;
  • 보티타오 (전북대학교 생리활성소재과학과) ;
  • 한상일 (고려대학교 환경생태공학부) ;
  • 최윤이 (고려대학교 환경생태공학부)
  • Received : 2016.05.03
  • Accepted : 2016.06.22
  • Published : 2016.06.30

Abstract

This study presents the potentiality of harmful algal bloom (HAB) control through the zooplankton, Daphnia magna. In case of co-cultivated D. magna with cyanobacteriums (Microcystis aeruginosa, Anabaena variabilis, and Limnothrix planctonica), the D. magna showed the $80.2{\pm}4.2%$, $39.7{\pm}4.0%$, and $25.9{\pm}10.9%$ of control efficiency for M. aeruginosa, A. variabilis and L. planctonica, respectively. Furthermore, algal control was investigated by using supernatant including metabolite/secretion of D. magna. The algal control efficiencies of supernatant were recorded as $24.9{\pm}9.9%$ and $8.9{\pm}4.0%$ for M. aeruginosa and A. variabilis, respectively. From the results of present study, it may be possible to provide a feasible way for development of eco-friendly HAB control methods.

본 연구에서는 동물플랑크톤인 Daphnia magna를 이용하여 유해조류인 Microcystis aeruginosa, Anabaena variabilis, Limnothrix planctonica에 대한 제어 가능성을 평가하였다. D. magna와 유해조류를 공생배양 시킨 경우, M. aeruginosa ($80.2{\pm}4.2%$), A. variabilis ($39.7{\pm}4.0%$) 그리고 L. planctonica ($25.9{\pm}10.9%$)의 순으로 조류 발생 억제효율을 보였다. 동물플랑크톤의 섭생에 의한 조류 제어 효과 이외에 D. magna의 대사/분비물질의 조류 제어 가능성을 확인할 수 있었다. D. magna를 배양한 배지를 유해조류 제어에 이용했을 때, M. aeruginosa와 A. variabilis에 대하여 각각 $24.9{\pm}9.9%$$8.9{\pm}4.0%$의 성장 억제효과를 확인할 수 있었다. 하지만, L. planctonica에 대한 성장 억제효과는 나타나지 않았다. 본 연구의 결과를 통하여 동물플랑크톤인 D. magna를 활용한 친환경적 유해조류 제어기술 개발이 가능할 것으로 판단된다.

Keywords

References

  1. El Ella SMA, MM Hosny and MF Bakry. 2007. Growth inhibition of bloom-forming using rice straw in water courses (case study). Proceeding of the 11th International Conference for Water Technology (IWTC11), Sharm El-Sheikh, Egypt: 105-12.
  2. Guan C, X Guo, G Cai, H Zheng, Y Li, W Zheng and Y Zheng. 2014. Novel algicidal evidence of a bacterium Bacillus sp. LP-10 killing Phaeocystis globosa, a harmful algal bloom causing species. Biol. Control 76:79-86. https://doi.org/10.1016/j.biocontrol.2014.05.007
  3. Li H and G Pan. 2015. Simultaneous removal of harmful algal blooms and microcystins using microorganism- and chitosan-modified local Soil. Environ. Sci. Technol. 49:6249-6256. https://doi.org/10.1021/acs.est.5b00840
  4. Paerl HW, RS Fulton, PH Moisander and J Dyble. 2001. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. The Sci. World J. 1:76-113. https://doi.org/10.1100/tsw.2001.138
  5. Paerl HW and J Huisman. 2009. Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ. Microbiol. Rep. 1:27-37. https://doi.org/10.1111/j.1758-2229.2008.00004.x
  6. Park C, B Lim, K You, M Park and S Hwang. 2014. Effects of environmental factors on akinete germination of Anabaena circinalis (Cyanobacteriaceae) isolated from the North Han River, Korea. Korean J. Ecol. Environ. 47:292-301. https://doi.org/10.11614/KSL.2014.47.4.292
  7. Sarnelle O, S Gustafsson and L-A Hansson. 2010. Effect of cyanobacteria on fitness components of the herbivore Daphnia. J. Plankton Res. 32:471-477. https://doi.org/10.1093/plankt/fbp151
  8. Sarnelle O. 2007. Initial conditions mediate the interaction between Daphnia and bloom-forming cyanobacteria. Limnol. Oceanogr. 52:2120-2127. https://doi.org/10.4319/lo.2007.52.5.2120
  9. Scheffer M and S Rinaldi. 2000. Minimal models of top-down control of phytoplankton. Freshw. Biol. 45:365-283.
  10. Stahl-Delbanco A, L-A Hansson and M Gyllstrom. 2003. Recruitment of resting stages may induce blooms of Microcystis at low N: P ratios. J. Plankton Res. 25:1099-1106. https://doi.org/10.1093/plankt/25.9.1099
  11. Steffensen DA. 2008. Economic cost of cyanobacterial blooms. pp. 855-865. In Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs (Kenneth Hudnell H eds.). Springer.
  12. Su JF, M Ma, L Wei, F Ma, JS Lu and SC Shao. 2016. Algicidal and denitrification characteristics on Acinetobacter sp. J25 against Microcystis aeruginosa and microbial community in eutrophic landscape water. Mar. Pollut. Bull. 107: 233-239. https://doi.org/10.1016/j.marpolbul.2016.03.066
  13. van Dok W and B Hart. 1997. Akinete germination in Anabaena circinalis (cyanophta). J. Phycol. 33:12-17. https://doi.org/10.1111/j.0022-3646.1997.00012.x
  14. Watson SB, J Ridal and GL Boyer. 2008. Taste and odour and cyanobacterial toxins: impairment, prediction, and management in the Great Lakes. Canadian J. Fish. Aquat. Sci. 65: 1779-1796. https://doi.org/10.1139/F08-084
  15. Yang L, H Maeda, T Yoshikawa and G-Q Zhou. 2012. Algicidal effect of bacterial isolates of Pedobacter sp. against cyanobacterium Microcystis aeruginosa. Water Sci. Eng. 5: 375-382.
  16. Yang W-D, J-S Liu, H-Y Li, X-L Zhang and Y-Z Qi. 2009. Inhibition of the growth of Alexandrium tamarense by algicidal substances in Chinese fir (Cunninghamia lanceolata). Bull. Environ. Contam. Toxicol. 83:537-541. https://doi.org/10.1007/s00128-009-9836-z
  17. Zhou J. 2010. Inhibitory effect of decomposing barley straw on algal growth in water and wastewater. ISTC Reports. Champaign, IL: Illinois Sustainable Technology Center.
  18. Zhou S, H Yin, S Tang, H Peng, D Yin, Y Yang, Z Liu and Z Dang. 2016. Physiological responses of Microcystis aeruginosa against the algicidal bacterium Pseudomonas aeruginosa. Ecotoxicol. Environ. Saf. 127:214-221. https://doi.org/10.1016/j.ecoenv.2016.02.001