DOI QR코드

DOI QR Code

The Effects of Cesium, Strontium and Cobalt on Cell Toxicity in the 2D and 3D Cell Culture Platforms

단층 및 입체 세포배양환경에서 세슘, 스트론튬 및 코발트가 세포 독성에 미치는 영향 분석

  • Kim, Gi Yong (Biotechnology Research Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI)) ;
  • Kang, Sung-Min (Biotechnology Research Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI)) ;
  • Jang, Sung-Chan (Biotechnology Research Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI)) ;
  • Huh, Yun Suk (Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University) ;
  • Roh, Changhyun (Biotechnology Research Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI))
  • 김지용 (한국원자력연구원 첨단방사선연구소 생명공학연구부) ;
  • 강성민 (한국원자력연구원 첨단방사선연구소 생명공학연구부) ;
  • 장성찬 (한국원자력연구원 첨단방사선연구소 생명공학연구부) ;
  • 허윤석 (인하대학교 생명공학과) ;
  • 노창현 (한국원자력연구원 첨단방사선연구소 생명공학연구부)
  • Received : 2016.05.13
  • Accepted : 2016.06.22
  • Published : 2016.06.30

Abstract

Currently, there are 442 operating nuclear power plants in the world, and 62 more are under construction. According to this reasoning, the treatment of radioactive waste is important to prevent the environmental ecosystem including humans, animals, and plants. Especially, a leakage of radioactive waste causes not only regional problem but also serious global one. In this study, we demonstrate the effect of radioisotopes (e.g., cesium, strontium, and cobalt) on a 3D culture cell. To develop the 3D cell culture system, we used a 96-well-culture plate with biocompatible agarose hydrogel. Using this method, we can perform the 3D cell culture system with three different cell lines such as HeLa, HepG2, and COS-7. In addition, we conducted a cell viability test in the presence of radioisotopes. Interestingly, the 3D morphological cells showed 42% higher cell viability than those on the 2D against cesium. This result indicates that the 3D platform provides cells morphological and physiological characteristic similar to in vivo grown tissues. Moreover, it overcomes the limitation of conventional cell culture system that can't reflect in vivo systems. Finally, we believe that the proposed approach can be applied a new strategy for simple high-throughput screening and accurate evaluation of metal toxicity assay.

전 세계적으로 원자력 발전소는 442기가 가동 중이며, 62기가 충원될 예정이다. 원자력 발전소의 증가에 따라 방사성 폐기물 유출에 대한 위험성도 증가하였다. 이러한 이유 때문에, 방사성 폐기물의 처리는 인간, 동물, 식물을 포함하는 자연 생태계를 보전하는 관점에서 중요하다. 또한, 방사성 폐기물 유출은 그 지역뿐만 아니라 전 세계적으로 심각한 문제를 야기한다. 본 연구는 입체 배양세포에 방사성 핵종원소(세슘, 스트론튬, 코발트)를 처리하였고 이에 대한 영향력을 확인하였다. 입체 배양 구조체는 아가로오스 하이드로겔을 이용하여 제작했으며 암세포 및 정상세포 (HeLa, HepG2, COS-7)를 사용하여 입체 배양을 실시 하였다. 입체 형태로 세포를 배양한 후 세슘, 스트론튬, 코발트 농도 변화에 따라 세포 생존능력을 분석하였다. 이때 입체 배양세포에서 생존능력이 단층 배양세포 보다 최대 42% 우수한 것을 확인하였다. 입체 배양구조체는 세포가 형태 및 생리학적으로 in vivo환경인 조직과 비슷하게 배양을 가능하게 하였다. 따라서, 입체 배양구조체는 기존의 단층 배양 한계점인 in vivo 환경에 적용시킬 수 없다는 한계를 극복하였다. 본 입체 배양 기술이 중금속 독성평가 및 단시간 내에 다수의 물질 분석을 수행하는 고속 대량 스크리닝 기술에 활용될 것으로 기대한다.

Keywords

References

  1. Avery SV. 1995. Caesium accumulation by microorganisms: uptake mechanisms, cation competition, compartmentalization and toxicity. J. Ind. Microbiol. Biotechnol. 14:76-84.
  2. Chakraborty D, S Maljim, A bandyopadhyay and S Basu. 2007. Biosorption of cesium-137 and strontium-90 by mucilaginous seeds of Ocimum basilicum. Bioresour. Technol. 98:2949-2952. https://doi.org/10.1016/j.biortech.2006.09.035
  3. Chen JP. 1997. Batch and continuous adsorption of strontium by plant root tissues. Bioresour. Technol. 60:185-189. https://doi.org/10.1016/S0960-8524(97)00021-7
  4. Daneshmandi S, SP Dibazar and S Fateh. 2016. Effects of 3-dimensional culture conditions(collagen-chitosan nano-scaffolds) on maturation of dendritic cells and their capacity to interact with T-lymphocytes. J. immunotoxicl. 13:235-242. https://doi.org/10.3109/1547691X.2015.1045636
  5. Ehsan SM, KM Welch-Reardon, ML Hughes and SC George. 2014. A three-dimensional in vitro model of tumor cell intravasation. Integr. Biol. 6:603-610. https://doi.org/10.1039/c3ib40170g
  6. Haessler U, Y Kalinin, MA Swartz and M Wu. 2009. An agarose-based microfluidic platform with a gradient buffer for 3D chemotaxis studies. Biomed. Microdevices 11:827-835. https://doi.org/10.1007/s10544-009-9299-3
  7. Hirose K. 2012. 2011 Fukushima Dai-ichi nuclear power plant accident: summary of regional radioactive deposition monitoring results. J. Environ. Radioact. 111:13-17. https://doi.org/10.1016/j.jenvrad.2011.09.003
  8. Jeong HH, YG Kim, SC Jang, H Yi and CS Lee. 2012. Profiling surface glycans on live cells and tissues using quantum dot-lectin nanoconjugates. Lab Chip. 12:3290-3295. https://doi.org/10.1039/c2lc40248c
  9. Kim J, JR Staunton and K Tanner. 2016. Independent Control of Topography for 3D Patterning of the ECM Microenvironment. Adv. Mater. 28:132-137. https://doi.org/10.1002/adma.201503950
  10. Kurth I, K Franke, T Pompe, M Bornhäuser and C Werner. 2009. Hematopoietic stem and progenitor cells in adhesive microcavities. Integr. Biol. 1:427-434. https://doi.org/10.1039/b903711j
  11. Lee JH. 2016. pp 020001. Status and prospect of NDT technology for nuclear energy industry in Korea. 42ND ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION: Incorporating the 6th European-American Workshop on Reliability of NDE. Korea.
  12. Lee W, D Kwon, W Choi, GY Jung and S Jeon. 2015. 3D-printed microfluidic device for the detection of pathogenic bacteria using size-based separation in helical channel with trapezoid cross-section. Sci. Rep. 5:7717. https://doi.org/10.1038/srep07717
  13. Loessner D, JA Flegg, HM Byrne, J Clements and D Hutmacher. 2013. Growth of confined cancer spheroids: a combined experimental and mathematical modelling approach. Integr. Biol. 5:597-605. https://doi.org/10.1039/c3ib20252f
  14. Luca M, F Angelica, A Daniele, B Aless, R Elena and O Andrea. 2010. Effects of ionizing radiation on cell-to-cell communication. Radiat. Res. 174:280-289. https://doi.org/10.1667/RR1889.1
  15. Marelli B, C Alessandiron, G Freddi and S Nazhat. 2014. Anionic fibroin-derived polypeptides accelerate MSC osteoblastic differentiation in a three-dimensional osteoid-like dense collagen niche. J. Mater. Chem. B. Mater. Biol. Med. 2:5339-5343. https://doi.org/10.1039/C4TB00477A
  16. Mercey E, P Obeid, D Glaise, ML Calvo-Munoz, C Guguen-Guillouzo and B Fouque. 2010. The application of 3D micropatterning of agarose substrate for cell culture and in situ comet assays. Biomaterials 31:3156-3165. https://doi.org/10.1016/j.biomaterials.2010.01.020
  17. Mosquera B, C Carvalho, R Veiga, L Mangia and R Anjos. 2006. 137 Cs distribution in tropical fruit trees after soil contamination. Environ. Exp. Bot. 55:273-281. https://doi.org/10.1016/j.envexpbot.2004.11.007
  18. Mothersill C and C Seymour. 1997. Medium from irradiated human epithelial cells but not human fibroblasts reduces the clonogenic survival of unirradiated cells. Int. J. Radiat. Biol. 71:421-427. https://doi.org/10.1080/095530097144030
  19. Munarin F, S Guerrerio, M Grellier, M Tanzi, M Barbosa, P Petrini and P Granja. 2011. Pectin-based injectable biomaterials for bone tissue engineering. Biomacromolecules 12:568-577. https://doi.org/10.1021/bm101110x
  20. Persidis A. 1998. High-throughput screening. Nat. Biotechnol. 16:488-489. https://doi.org/10.1038/nbt0598-488
  21. Seo SJ, IY Kim, YJ Choi, T Akaike and CS Cho. 2006. Enhanced liver functions of hepatocytes cocultured with NIH 3T3 in the alginate/galactosylated chitosan scaffold. Biomaterials 27:1487-1495. https://doi.org/10.1016/j.biomaterials.2005.09.018
  22. Seymour CM. 1997. Survival of human epithelial cells irradiated with cobalt 60 as microcolonies or single cells. Int. J. Radiat. Biol. 72:597-606. https://doi.org/10.1080/095530097143095
  23. Shen Z, J Bi, D Nguyen, CJ Xian, H Zhang and S Dai. 2012. Exploring thermal reversible hydrogels for stem cell expansion in three-dimensions. Soft Matter 8:7250-7257. https://doi.org/10.1039/c2sm25407g
  24. Smith BH, LS Gazda, BL Conn, K Jain, S Asina, DM Levine, TS Parker, MA Laramore, PC Martis and HV Vinerean. Three-dimensional culture of mouse renal carcinoma cells in agarose macrobeads selects for a subpopulation of cells with cancer stem cell or cancer progenitor properties. Cancer Res. 71:716-724.
  25. Song K, HH Jeong, SH Jin, JS Park and CS Lee. 2014. Optimization of microwell-based cell docking in microvalve integrated microfluidic device. BioChip J. 8:227-233. https://doi.org/10.1007/s13206-014-8309-6
  26. Torisawa YS, B Mosadegh, GD Luker, M Morell, KS O'Shea and S Takayama. 2009. Microfluidic hydrodynamic cellular patterning for systematic formation of co-culture spheroids. Integr. Biol. 1:649-654. https://doi.org/10.1039/b915965g
  27. Zhang W, T Liu, X Hu and J Gond. 2012. Novel nanofibrous composite of chitosan-CaCO 3 fabricated by electrolytic biomineralization and its cell biocompatibility. RSC Adv. 2:514-519. https://doi.org/10.1039/C1RA00549A
  28. Zhu YG and E Smolders. 2000. Plant uptake of radiocaesium: a review of mechanisms, regulation and application. J. Exp. Bot. 51:1635-1645. https://doi.org/10.1093/jexbot/51.351.1635