DOI QR코드

DOI QR Code

Manufacturing Technology for Tape Casting and Soft Magnetic Powder Using by Recycling Scrap of Fe-Si Electrical Sheet

Fe-Si 전기강판 폐스크랩을 이용한 연자성 분말 및 테이프 제조기술

  • Hong, Won Sik (Electronic Convergence Materials & Device Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Kim, Sang Hyun (Electronic Convergence Materials & Device Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Park, Ji-Yeon (Electronic Convergence Materials & Device Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Oh, Chulmin (Electronic Convergence Materials & Device Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Lee, Woo Sung (Electronic Convergence Materials & Device Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Kim, Seung Gyeom (Sewon Advanced metals co. Ltd) ;
  • Han, Sang Jo (Sewon Advanced metals co. Ltd) ;
  • Shim, Geum Taek (Sewon Advanced metals co. Ltd) ;
  • Kim, Hwi-Jun (Korea Institute of Industrial Technology (KITECH), Liquid processing & Casting R&D Group)
  • 홍원식 (전자부품연구원 융복합전자소재연구센터) ;
  • 김상현 (전자부품연구원 융복합전자소재연구센터) ;
  • 박지연 (전자부품연구원 융복합전자소재연구센터) ;
  • 오철민 (전자부품연구원 융복합전자소재연구센터) ;
  • 이우성 (전자부품연구원 융복합전자소재연구센터) ;
  • 김승겸 (세원특수금속(주)) ;
  • 한상조 (세원특수금속(주)) ;
  • 심금택 (세원특수금속(주)) ;
  • 김휘준 (한국생산기술연구원 뿌리산업기술연구소 주조공정그룹)
  • Received : 2016.05.24
  • Accepted : 2016.06.07
  • Published : 2016.06.30

Abstract

This study focused on examining the possibility for recycling of Fe-Si electric sheet. We manufactured Fe-6.5Si mother alloy using by Fe-Si electric sheet scrap for transformer core materials. And then, soft magnetic alloy powder which diameter and shape were $45{\sim}150{\mu}m$ and sphere type was prepared by gas atomization process. As we compared to commercial Fe-6.5Si powder, its diameter distribution and microstructure of recycled powder was a similar. To investigate the possibility of reusing the soft magnetic composite sheet for electronics, recycled powder was treated to have a high aspect ratio (AR), and we finally obtained the 65~66 AR and $2.3{\mu}m$ thickness powder. To release the residual stress of powder, heat treatment was conducted under $300{\sim}400^{\circ}C$, $N_2$ gas. And then, soft magnetic sheet was made by tape casting process using by those powders. After the density and permeability of tape was measured, and we confirmed that the recycled Fe-Si electric sheet scrap was possible to reuse the soft magnetic materials of electronics.

Keywords

References

  1. I. W. Suh, H. S. Jung, Y.-H. Lee, Y. H. Kim and S. H. Choa, "Heat Dissipation Technology of IGBT Module Package, J. Microelectron. Packag. Soc., 21(3), 7 (2014). https://doi.org/10.6117/kmeps.2014.21.3.007
  2. H. S. Jung, "Potential Value Evaluation of The Rare Metal in Urban mine", Issue paper, Samsung Economic Research Institute (2011).
  3. J. P. Hong, J. Huh, S. Y. Cha and K. H. ha, "The Electric Equipment and Magnetic Materials", The Transac. Korean Ins. Electric. Eng., 55(9), 45 (2006).
  4. C. J. Yang, "The Tehcnology Development Trend of Magnetic Materials", J. Korean Inst. Electr. Electron. Mater. Eng., 13(11), 1 (2000).
  5. Y. D. Shin and J.-T. Song, "Research Trend and Development of Hard Magnetic Materials", J. Korean Inst. Electr. Electron. Mater. Eng., 9(1), 93 (1996).
  6. P.-K. Choi, "Strategic Elements Project of Japan", J. Korean Magnetics Soc., 24(6), 197 (2014). https://doi.org/10.4283/JKMS.2014.24.6.197
  7. Y. Hirayama, Y. K. Takahashi, S. Hirosawa and K. Hono, Scripta Materialia, 95, 70 (2015). https://doi.org/10.1016/j.scriptamat.2014.10.016
  8. S. Suzuki, T. Kuno, K. Urushibata, K. Kobayashi, N. Sakuma, K. Washio, H. Kishimoto, A. Kato and A. Manabe, AIP Advaces, 4, 117131 (2014). https://doi.org/10.1063/1.4902176
  9. J. R. Kim, S. G. Cho and K. W. Jeon, "Development of Exchange-coupling Magnets Using Soft/hard Nanoparticles", J. Korean Magnetic. Soc., 21(6), 225 (2011). https://doi.org/10.4283/JKMS.2011.21.6.225
  10. E. F. Kneller and R. Hawig, "The exchange-spring magnet: a new material principle for permanent magnets", IEEE Trans. Magn., 27, 3588 (1991). https://doi.org/10.1109/20.102931
  11. C.-H. Lee, "Synthesis and characterization of soft magnetic composite in Fe2O3-Mg system by mechanical alloying", J. Korean Crystal Growth and Crystal Technol., 25(6), 245 (2015). https://doi.org/10.6111/JKCGCT.2015.25.6.245
  12. C. C. Koch, O. B. Cavin, C. G. Mckamey and J. O. Scarbrough, "Preparation of amorphous Ni60Nb40 by mechanical alloying", Appl. Phys. Lett., 43, 1017 (1983). https://doi.org/10.1063/1.94213
  13. H. J. Fecht, E. Hellstern, Z. Fu and W. L. Johnson, "Nanocrystalline metals prepared by high-energy ball milling", Metal. Trans., 21, 2333 (1990). https://doi.org/10.1007/BF02646980
  14. J. Eckert and L. Schultz, "Glass formation and extended solubilities in mechanically alloyed cobalt-transition metal alloys", J. Less-Common Metals, 166, 293 (1990). https://doi.org/10.1016/0022-5088(90)90011-8
  15. U. Mizutani and C. H. Lee, "Effect of mechanical alloying beyond the completion of glass formation for Ni-Zr alloy powders", J. Mater. Sci., 25, 399 (1990). https://doi.org/10.1007/BF00714046
  16. K. Suzuki, Y. Homma, K. Suzuki and M. Misawa, "Structural characterization of Ni-V amorphous alloys prepared by mechanical alloying", Mater. Sci. Eng., A134, 987 (1991).
  17. R. B. Schwarz and W. L. Johnson, "Formation of an amorphous alloy by solid state reaction of the pure polycrystalline metals", Phys. Rev. Lett., 51, 415 (1983). https://doi.org/10.1103/PhysRevLett.51.415
  18. J. K. Lee, J. H. Yoo, M. J. Yoo and W. S. Lee, "Improving Stability and Characteristic of Circuit and Structure with the Ceramic Process Variable of Dualband Antenna Switch Module", J. Microelectron. Packag. Soc., 12(2), 105 (2005).