DOI QR코드

DOI QR Code

Measurement Technologies of Mechanical Properties of Polymers used for Flexible and Stretchable Electronic Packaging

유연/신축성 전자패키징 용 폴리머 재료의 기계적 물성 측정 기술 리뷰

  • Kim, Cheolgyu (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Lee, Tae-Ik (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Taek-Soo (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • 김철규 (한국과학기술원 기계공학과) ;
  • 이태익 (한국과학기술원 기계공학과) ;
  • 김택수 (한국과학기술원 기계공학과)
  • Received : 2016.05.25
  • Accepted : 2016.06.07
  • Published : 2016.06.30

Abstract

This paper presents an overview of selected advanced measurement technologies for the mechanical properties of polymers used for flexible and stretchable electronic packaging. Over the years, a variety of flexible and stretchable electronics have been developed due to their potential applications for next generation IT industry. To achieve more flexible and wearable devices for practical applications, the usage of polymeric components has been increased significantly. Therefore, accurate measurement of mechanical properties of the polymers is necessary in order to design mechanically reliable devices. However, the measurement has been challenging due to the soft nature and thin applications of polymers. Here, we describe novel measurement technologies of mechanical properties of polymers for flexible and stretchable electronics.

Keywords

References

  1. S. H. Chae, W. J. Yu, J. J. Bae, D. L. Duong, D. Perello, H. Y. Jeong, Q. H. Ta, T. H. Ly, Q. A. Vu and M. Yun, "Transferred wrinkled $Al_2O_3$ for highly stretchable and transparent graphene-carbon nanotube transistors", Nat. Mater., 12, 403 (2013). https://doi.org/10.1038/nmat3572
  2. M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwodiauer, I. Graz and S. Bauer-Gogonea, "An ultra-lightweight design for imperceptible plastic electronics", Nature, 499, 458 (2013). https://doi.org/10.1038/nature12314
  3. Y. Chen, J. Au, P. Kazlas, A. Ritenour, H. Gates and M. McCreary, "Electronic paper: Flexible active-matrix electronic ink display", Nature, 423, 136 (2003).
  4. B. Lahey, A. Girouard, W. Burleson and R. Vertegaal, "Paper-Phone: understanding the use of bend gestures in mobile devices with flexible electronic paper displays", Proc the SIGCHI Conference on Human Factors in Computing Systems. Vancouver, 1303 (ACM) (2011).
  5. H. J. Yen, C. J. Chen and G. S. Liou, "Flexible Multi-Colored Electrochromic and Volatile Polymer Memory Devices Derived from Starburst Triarylamine-Based Electroactive Polyimide", Adv. Funct. Mater., 23, 5307 (2013). https://doi.org/10.1002/adfm.201300569
  6. Y.-C. Lai, Y.-C. Huang, T.-Y. Lin, Y.-X. Wang, C.-Y. Chang, Y. Li, T.-Y. Lin, B.-W. Ye, Y.-P. Hsieh and W.-F. Su, "Stretchable organic memory: toward learnable and digitized stretchable electronic applications", NPG Asia Materials, 6, e87 (2014). https://doi.org/10.1038/am.2013.85
  7. M. S. White, M. Kaltenbrunner, E. D. Glowacki, K. Gutnichenko, G. Kettlgruber, I. Graz, S. Aazou, C. Ulbricht, D. A. Egbe and M. C. Miron, "Ultrathin, highly flexible and stretchable PLEDs", Nat. Photonics, 7, 811 (2013). https://doi.org/10.1038/nphoton.2013.188
  8. J. Liang, L. Li, X. Niu, Z. Yu and Q. Pei, "Elastomeric polymer light-emitting devices and displays", Nat. Photonics, 7, 817 (2013). https://doi.org/10.1038/nphoton.2013.242
  9. C.-L. C. Chien, Y.-C. Huang, S.-F. Hu, C.-M. Chang, M.-C. Yip and W. Fang, "Polymer dispensing and embossing technology for the lens type LED packaging", J. Micromech. Microeng., 23, 065019 (2013). https://doi.org/10.1088/0960-1317/23/6/065019
  10. S. Khan, L. Lorenzelli and R. S. Dahiya, "Technologies for printing sensors and electronics over large flexible substrates: a review", IEEE Sens. J, 15, 3164 (2015). https://doi.org/10.1109/JSEN.2014.2375203
  11. T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba and K. Hata, "A stretchable carbon nanotube strain sensor for human-motion detection", Nat. Nanotechnol., 6, 296 (2011). https://doi.org/10.1038/nnano.2011.36
  12. J. E. Carle, M. Helgesen, M. V. Madsen, E. Bundgaard and F. C. Krebs, "Upscaling from single cells to modules-fabrication of vacuum-and ITO-free polymer solar cells on flexible substrates with long lifetime", J Mater. Chem. C Mater. Opt. Electron Devices,, 2, 1290 (2014). https://doi.org/10.1039/C3TC31859A
  13. M. Kaltenbrunner, M. S. White, E. D. Glowacki, T. Sekitani, T. Someya, N. S. Sariciftci and S. Bauer, "Ultrathin and lightweight organic solar cells with high flexibility", Nat. Commun, 3, 770 (2012). https://doi.org/10.1038/ncomms1772
  14. A. Gaikwad, A. Zamarayeva, J. Rousseau, H. Chu, I. Derin and D. Steingart, "Highly stretchable alkaline batteries based on an embedded conductive fabric", Adv. Mater., 24, 5071 (2012). https://doi.org/10.1002/adma.201201329
  15. G. Zhou, F. Li and H.-M. Cheng, "Progress in flexible lithium batteries and future prospects", Energy. Environ. Sci., 7, 1307 (2014). https://doi.org/10.1039/C3EE43182G
  16. NSC, National Standard Coordinator. from http://www.kscodi.or.kr/?mid=year_2014_sub03_01.
  17. D.-H. Kim, N. Lu, R. Ma, Y.-S. Kim, R.-H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao and A. Islam, "Epidermal electronics", Science, 333, 838 (2011). https://doi.org/10.1126/science.1206157
  18. D. J. Lipomi, M. Vosgueritchian, B. C. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox and Z. Bao, "Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes", Nat. Nanotechnol., 6, 788 (2011). https://doi.org/10.1038/nnano.2011.184
  19. W.-Y. Chang, T.-H. Fang, H.-J. Lin, Y.-T. Shen and Y.-C. Lin, "A large area flexible array sensors using screen printing technology", J. Display Technol., 5, 178 (2009). https://doi.org/10.1109/JDT.2008.2004862
  20. G. S. Jeong, D.-H. Baek, H. C. Jung, J. H. Song, J. H. Moon, S. W. Hong, I. Y. Kim and S.-H. Lee, "Solderable and electroplatable flexible electronic circuit on a porous stretchable elastomer", Nat. Commun, 3, 977 (2012). https://doi.org/10.1038/ncomms1980
  21. P. Bing, X. Hui-min, H. Tao and A. Asundi, "Measurement of coefficient of thermal expansion of films using digital image correlation method", Polym. Test., 28, 75 (2009). https://doi.org/10.1016/j.polymertesting.2008.11.004
  22. D. Van den Berg, M. Barink, P. Giesen, E. Meinders and I. Yakimets, "Hygroscopic and thermal micro deformations of plastic substrates for flexible electronics using digital image correlation", Polym. Test., 30, 188 (2011). https://doi.org/10.1016/j.polymertesting.2010.11.012
  23. C. Dudescu, A. Botean and M. Hardau, "Thermal expansion coefficient determination of polymeric materials using digital image correlation", Mater Plast, 50, 55 (2013).
  24. Y. Wang and W. Tong, "A high resolution DIC technique for measuring small thermal expansion of film specimens", Opt. Lasers. Eng., 51, 30 (2013). https://doi.org/10.1016/j.optlaseng.2012.08.001
  25. M. De Strycker, L. Schueremans, W. Van Paepegem and D. Debruyne, "Measuring the thermal expansion coefficient of tubular steel specimens with digital image correlation techniques", Opt. Lasers. Eng., 48, 978 (2010). https://doi.org/10.1016/j.optlaseng.2010.05.008
  26. J. A. Diaz, R. J. Moon and J. P. Youngblood, "Contrast enhanced microscopy digital image correlation: a general method to contact-free coefficient of thermal expansion measurement of polymer films", ACS Appl. Mater. Interfaces, 6, 4856 (2014). https://doi.org/10.1021/am405860y
  27. T.-I. Lee, M. S. Kim and T.-S. Kim, "Contact-free thermal expansion measurement of very soft elastomers using digital image correlation", Polym. Test., 51, 181 (2016). https://doi.org/10.1016/j.polymertesting.2016.03.014
  28. H. Wang, J. K. Keum, A. Hiltner, E. Baer, B. Freeman, A. Rozanski and A. Galeski, "Confined crystallization of polyethylene oxide in nanolayer assemblies", Science, 323, 757 (2009). https://doi.org/10.1126/science.1164601
  29. H. Lee, M. Alcoutlabi, J. V. Watson and X. Zhang, "Electrospun nanofiber-coated separator membranes for lithium-ion rechargeable batteries", J. Appl. Polym., 129, 1939 (2013). https://doi.org/10.1002/app.38894
  30. T. Kim, J.-H. Kim, T. E. Kang, C. Lee, H. Kang, M. Shin, C. Wang, B. Ma, U. Jeong and T.-S. Kim, "Flexible, highly efficient all-polymer solar cells", Nat. Commun, 6 (2015).
  31. Y. Liu, Y.-C. Chen, S. Hutchens, J. Lawrence, T. Emrick and A. J. Crosby, "Directly Measuring the Complete Stress-Strain Response of Ultrathin Polymer Films", Macromolecules, 48, 6534 (2015). https://doi.org/10.1021/acs.macromol.5b01473
  32. R. Sondergaard, M. Hosel, D. Angmo, T. T. Larsen-Olsen and F. C. Krebs, "Roll-to-roll fabrication of polymer solar cells", Mater. today, 15, 36 (2012). https://doi.org/10.1016/S1369-7021(12)70019-6
  33. D. Angmo, T. T. Larsen-Olsen, M. Jorgensen, R. R. Sondergaard and F. C. Krebs, "Roll-to-Roll Inkjet Printing and Photonic Sintering of Electrodes for ITO Free Polymer Solar Cell Modules and Facile Product Integration", Adv. Energy Mater., 3, 172 (2013). https://doi.org/10.1002/aenm.201200520
  34. D. Angmo, S. A. Gevorgyan, T. T. Larsen-Olsen, R. R. Sondergaard, M. Hosel, M. Jorgensen, R. Gupta, G. U. Kulkarni and F. C. Krebs, "Scalability and stability of very thin, rollto-roll processed, large area, indium-tin-oxide free polymer solar cell modules", Org. Electron., 14, 984 (2013). https://doi.org/10.1016/j.orgel.2012.12.033
  35. Y.-J. Hwang, G. Ren, N. M. Murari and S. A. Jenekhe, "n-type naphthalene diimide-biselenophene copolymer for allpolymer bulk heterojunction solar cells", Macromolecules, 45, 9056 (2012). https://doi.org/10.1021/ma3020239
  36. A. Facchetti, "Polymer donor-polymer acceptor (all-polymer) solar cells", Mater. Today, 16, 123 (2013). https://doi.org/10.1016/j.mattod.2013.04.005
  37. J.-H. Kim, A. Nizami, Y. Hwangbo, B. Jang, H.-J. Lee, C.-S. Woo, S. Hyun and T.-S. Kim, "Tensile testing of ultra-thin films on water surface", Nat. Commun, 4 (2013).
  38. T.-I. Lee, C. Kim, M. S. Kim and T.-S. Kim, "Flexural and tensile moduli of flexible FR4 substrates", Polym. Test. (2016). https://doi.org/10.1016/j.polymertesting.2016.05.012
  39. J. Jin, J. H. Ko, S. Yang and B. S. Bae, "Rollable Transparent Glass-Fabric Reinforced Composite Substrate for Flexible Devices", Adv. Mater., 22, 4510 (2010). https://doi.org/10.1002/adma.201002198
  40. H. Y. Kim, J. Jin, S.-H. Ko Park, I.-Y. Eom and B.-S. Bae, "350 C processable low-CTE transparent glass-fabric-reinforced hybrimer film for flexible substrates", J. Inf. Disp., 16, 57 (2015). https://doi.org/10.1080/15980316.2014.1003984
  41. C. Kim, T.-I. Lee, M. S. Kim and T.-S. Kim, "Warpage Analysis of Electroplated Cu Films on Fiber-Reinforced Polymer Packaging Substrates", Polymers, 7, 985 (2015). https://doi.org/10.3390/polym7060985
  42. S.-J. Joo, B. Park, D.-H. Kim, D.-O. Kwak, I.-S. Song, J. Park and H.-S. Kim, "Investigation of multilayer printed circuit board (PCB) film warpage using viscoelastic properties measuredby a vibration test", J. Micromech. Microeng, 25,035021 (2015). https://doi.org/10.1088/0960-1317/25/3/035021

Cited by

  1. Manufacturing Experiments using FDM 3D-printed Flexible Resistance Sensors with Heterogeneous Polymer Material Annealing vol.19, pp.1, 2016, https://doi.org/10.14775/ksmpe.2020.19.01.081