DOI QR코드

DOI QR Code

A Study on Fluorescence Imaging System Characteristics depending on Tilting of Band Pass Filter

대역통과필터의 기울임에 따른 형광 이미징 시스템 특성 분석 연구

  • Kim, Taehoon (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Cho, Sang Uk (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Park, Chan Sik (Nawoo Vision Corporation R&D Group) ;
  • Lee, Hak-Guen (Nawoo Vision Corporation R&D Group) ;
  • Kim, Doo-In (BK21+Nano-integrated Cognomechatronics Engineering, Pusan National University) ;
  • Jeong, Myung Yung (Department of Cogno-Mechatronics Engineering, Pusan National University)
  • 김태훈 (부산대학교 인지메카트로닉스공학과) ;
  • 조상욱 (부산대학교 인지메카트로닉스공학과) ;
  • 박찬식 (나우비젼 기술연구소) ;
  • 이학근 (나우비젼 기술연구소) ;
  • 김두인 (부산대학교 BK21+나노융합인지메카트로닉스공학 사업단) ;
  • 정명영 (부산대학교 인지메카트로닉스공학과)
  • Received : 2016.06.17
  • Accepted : 2016.06.28
  • Published : 2016.06.30

Abstract

In this paper, we studied effects of tilting angle of band pass filter on the characteristics of fluorescence imaging system. Theoretical modeling showed that transmittance and filtering range are highly dependent on the tilting angle. Measurements on transmittance as a function of wavelength confirmed that changes in transmittance and the band filter range are in good agreement with theoretical prediction. Therefore, characteristics of band pass filter can be precisely tuned by altering tilting angle of band pass filter in order to enhance fluorescence signal in bio imaging system.

본 논문에서는 형광 이미징 시스템의 대역통과필터의 회전에 의한 특성 변화를 관찰하였다. 이론적 모델을 통해 대역통과필터의 투과율 및 대역폭이 회전각에 따라 변한다는 것을 알 수 있고, 회전각에 따른 파장별 투과율 측정을 통해 이를 입증하였다. 그러므로 대역통과필터의 회전에 따른 특성변화를 이용하면 바이오 영상 장치를 정밀하게 조절하여 시스템의 형광 신호를 더욱 강하게 하고, 양질의 영상을 얻을 수 있다.

Keywords

References

  1. J. Choi, S. U. Cho, D. Kim, H. Lee, H. S. Choi and M. Y. Jeong, "A Study on Characteristics Analysis of Multichannel Filter Module for Near-infrared Fluorescence Imaging", J. Microelectron. Packag. Soc., 23(1), 29 (2016).
  2. J. G. Jeong, "General perspectives for molecular nuclear imaging", The Korean Society of Nuclear Medicine, 38(2), 111 (2004).
  3. J. H. Lee, G. Park, G. H. Hong, J. Choi and H. S. Choi, "Design considerations for targeted optical contrast agents", Quantitative Imaging in Medicine and Surgery, 2(4), 266 (2012). https://doi.org/10.3978/j.issn.2223-4292.2012.12.04
  4. J. V. Frangioni, "In vivo near-infrared fluorescence imaging", Current Opinion in Chemical Biology, 7(5), 626 (2003). https://doi.org/10.1016/j.cbpa.2003.08.007
  5. P. Yeh, "Optics Waves in Layered Media", Wiley series in pure and applied optics, pp.161-162, Wiley, New York(1988).
  6. A. W. Yang, S. U. Cho, M. Y. Jeong and H. S. Choi, "NIR Fluorescence Imaging Systems with Optical Packaging Technology", J. Microelectron. Packag. Soc., 21(4), 25 (2014).
  7. D. M. Kim, J. H. Ryu and M. Y. Jeong, "Optical Packaging and Interconnection Technology", J. Microelectron. Packag. Soc., 19(4), 13 (2012). https://doi.org/10.6117/kmeps.2012.19.4.013
  8. A. M. De Grand and J. V. Frangioni, "An operational nearinfrared fluorescence imaging system prototype for large animal surgery", Technology in Cancer Research & Treatment, 2(6), 553 (2003). https://doi.org/10.1177/153303460300200607
  9. C. Dunsby, P. M. P. Lanigan, J. McGinty, D. S. Elson, J. Requejo-Isidro, I. Munro, N. Galletly, F. McCann, B. Treanor, B. Onfelt, D. M. Davis, M. A. A. Neil and P. M. W. French, "An electronically tunable ultrafast laser source applied to fluorescence imaging and fluorescence lifetime imaging microscopy", Journal of Physics D: Applied Physics, 37, 3296 (2004). https://doi.org/10.1088/0022-3727/37/23/011

Cited by

  1. A Study on the Fluorescence Imaging System Packaging and Optical Intensity Characteristics vol.23, pp.3, 2016, https://doi.org/10.6117/kmeps.2016.23.3.037
  2. 양방향 통신 장치 제작 및 분석 vol.8, pp.2, 2016, https://doi.org/10.22156/cs4smb.2018.8.2.083
  3. 레이저 기반 형광 영상 시스템의 Signal to Background Ratio 향상 연구 vol.27, pp.4, 2020, https://doi.org/10.6117/kmeps.2020.27.4.107