DOI QR코드

DOI QR Code

Effects of Demolding Temperature on Formability and Optical Properties of Anti-reflective Nanostructure

반사방지 나노구조의 성형성과 광학적 특성에 대한 이형 온도의 영향

  • Yeo, N.E. (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Shim, Y.B. (Department of Opto-Mechatronics Engineering, Pusan National University) ;
  • Cho, S.U. (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Kim, D.I. (BK21+Nano-integrated Cognomechatronics Engineering, Pusan National University) ;
  • Kim, K.N. (Seo Yeong Co., Ltd.) ;
  • Jang, K.S. (National Nanofab Center) ;
  • Jeong, M.Y. (Department of Opto-Mechatronics Engineering, Pusan National University)
  • 여나은 (부산대학교 인지메카트로닉스공학과) ;
  • 심영보 (부산대학교 광메카트로닉스공학과) ;
  • 조상욱 (부산대학교 인지메카트로닉스공학과) ;
  • 김두인 (부산대학교 BK21+나노융합인지메카트로닉스공학 사업단) ;
  • 김기남 ((주)서영) ;
  • 장경수 (나노종합기술원) ;
  • 정명영 (부산대학교 광메카트로닉스공학과)
  • Received : 2016.06.15
  • Accepted : 2016.06.27
  • Published : 2016.06.30

Abstract

In this study, effects of demolding temperature (DT) on the formability and optical properties were evaluated in order to optimize thermal nanoimprint lithography for anti-reflective film. Characterization on optical property showed that optical performance was gradually enhanced as the DT increased up to $70^{\circ}C$ while the transmittance and the reflectance was degraded as the DT increased further to $100^{\circ}C$. In addition, similar behavior was observed from formability analysis. It was contributed to the formation of free volume and viscose flow. Therefore, it was concluded that the formability and optical property are highly influenced by the formation of free volume and viscous flow of polymer depending on the DT.

본에서는 저반사 나노구조 필름의 열 나노임프린트 공정 최적화를 위해 나노구조의 성형성과 광학적 특성에 대한 이형 온도의 영향을 평가하였다. 이형 온도에 따른 광학적 특성을 평가한 결과 $70^{\circ}C$까지는 이형 온도가 증가함에 따라 투과율과 반사율 특성이 향상되는 거동을 보였으나 그 이후에는 오히려 투과율이 감소하고 반사율이 증가하는 경향을 보였다. 이와 같은 이형온도에 따른 거동은 성형성에도 유사하게 관찰되었으며 자유체적 형성과 고분자 유동에 의한 것으로 보인다. 따라서, 이형 온도에 따라 고분자의 유동과 자유체적의 형성에 의한 패턴의 성형성이 결정되며, 이로 인해 광학적 특성에 영향을 줄 수 있음을 확인하였다.

Keywords

References

  1. A. R. Parker and H. E. Townley, "Biomimetics of photonic nanostructures"", Nature nanotechnology 2(6), 347 (2007). https://doi.org/10.1038/nnano.2007.152
  2. S. H. Kim, S. U. Cho, Y. S. Kim and M. Y. Jeong, "Fabrication of Multi-height Nanostructures for High Antireflection and Superhydrophobicity", Journal of the Korean Society for Precision Engineering, 349 (2011).
  3. B. J. Bae, S. H. Hong, S. U. Kwak and H. Lee, "Fabrication of Moth-Eye Pattern on a Lens Using Nano Imprint Lithography and PVA Template", Journal of the Korean institute of surface engineering 42(2), 59 (2009). https://doi.org/10.5695/JKISE.2009.42.2.059
  4. S. R. Kennedy and M. J. Brett, "Porous broadband antireflection coating by glancing angle deposition", Applied optics, 42(22), 4573 (2003). https://doi.org/10.1364/AO.42.004573
  5. D. G. Choi, K. J. Lee, J. H. Jeong, K. D. Kim, J. H. Choi, J. H. Lee, A. Ali and E. S. Lee, "Fabrication of Synthetic Moth-Eye Anti-Reflection Structure Using Nanoimprint", Journal of The Korean Society of Mechanical Engineers spring conference, 13-17 (2008).
  6. M. H. Kwon and H. Lee, "Fabrication of Functional ZnO Nano-particles Dispersion Resin Pattern Through Thermal Imprinting Process", Journal of the Korean Society for Precision Engineering, 28(12), 1419 (2011).
  7. K. H. Moon, S. B. Shin, I. S. Park, H. Lee, H. S. Cha and J. H. Ahn, "UV-nanoimprint Patterning Without Residual Layers Using UV-blocking Metal Layer", J. Microelectron. Packag. Soc., 12(4), 275 (2005).
  8. Y. Hirai, M. Fujiwara, T. Okuno, Y. Tanaka, M. Endo, S. Irie, K. Nakagawa and M. Sasago, "Study of the resist deformation in nanoimprint lithography", Journal of Vacuum Science & Technology B, 19(6), 2811 (2001). https://doi.org/10.1116/1.1415510
  9. B. H. Kim, K. S. Kim, J. H. Ban, J. K. Shin and H. Y. Kim, "Micro/Nano Rheological Characteristics of PMMA in Hot Embossing Process", Journal of the Korean Society for Technology of Plasticity, 259 (2004).
  10. C. Gourgon, C. Perret, G. Micouin, F. Lazzarino, J. H. Tortai, O. Joubert and J. P. E. Grolier, "Influence of pattern density in nanoimprint lithography", Journal of Vacuum Science & Technology B, 21(1), 98 (2003). https://doi.org/10.1116/1.1532735
  11. S. A. Boden and D. M. Bagnall, "Tunable reflection minima of nanostructured antireflective surfaces", Applied Physics Letters, 93(13), 133108 (2008). https://doi.org/10.1063/1.2993231
  12. H. Schulz, M. Wissen and H.-C. Scheer, "Local mass transport and its effect on global pattern replication during hot embossing", Microelectronic engineering, 67, 657 (2003).
  13. W. K. Cho, S. U. Cho, D. I. Kim, D. U. Kim and M. Y. Jeong, "Effects of Static Contact Angle and Roughness on Rolling Resistance of Droplet", J. Microelectron. Packag. Soc., 23(1), 23 (2016). https://doi.org/10.6117/kmeps.2016.23.1.023
  14. H. S. Park, H. H. Shin, S. W. Seo, M. Y. Sung, W. B. Choi, S. W. Choi and S. Y. Park, "Novel Process to Improve Defect Problems for Thermal Nanoimprint Lithography", IEEE Transactions on Semiconductor Manufacturing, 20(1), 13 (2007). https://doi.org/10.1109/TSM.2006.890315
  15. S. G. Park, Z. Song, L. Brumfield, A. Amirsadeghi and J. J. Lee, "Demolding temperature in thermal nanoimprint lithography", Applied Physics A, 97(2), 395 (2009). https://doi.org/10.1007/s00339-009-5224-0
  16. T. Leveder, S. Landisa, L. Davoustb and N. Chaixc, "Optimization of demolding temperature for throughput improvement of nanoimprint lithography", Microelectronic Engineering, 84(5), 953 (2007). https://doi.org/10.1016/j.mee.2007.01.066
  17. H. K. Raut, V. A. Ganesh, A. S. Nair and S. Ramakrishna, "Anti-reflective coatings: A critical, in-depth review", Energy Environ. Sci., 4(10), 3779 (2011). https://doi.org/10.1039/c1ee01297e
  18. N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai and H. Masuda, "Optimization of anti-reflection moth-eye structures for use in crystalline silicon solar cells", Progress in Photovoltaics: Research and Applications, 19(2), 134 (2011). https://doi.org/10.1002/pip.994

Cited by

  1. 고분자 나노 표면의 내스크래치 특성 향상 연구 vol.24, pp.3, 2017, https://doi.org/10.6117/kmeps.2017.24.3.041
  2. 광 증폭용 플라즈모닉 나노구조 제작을 위한 은 나노입자 증착 연구 vol.25, pp.1, 2018, https://doi.org/10.6117/kmeps.2018.25.1.011