DOI QR코드

DOI QR Code

Effects of Different Pretreatment Methods and Amounts of Reductant on Preparation of Silver-coated Copper Flakes Using Electroless Plating

무전해 도금에 의한 은코팅 구리 플레이크의 제조에서 전처리 공정 및 환원제 양의 영향

  • Oh, Sang Joo (Department of Materials Science & Engineering, Seoul National University of Science & Technology) ;
  • Kim, Ji Hwan (Department of Materials Science & Engineering, Seoul National University of Science & Technology) ;
  • Lee, Jong-Hyun (Department of Materials Science & Engineering, Seoul National University of Science & Technology)
  • 오상주 (서울과학기술대학교 신소재공학과) ;
  • 김지환 (서울과학기술대학교 신소재공학과) ;
  • 이종현 (서울과학기술대학교 신소재공학과)
  • Received : 2016.05.11
  • Accepted : 2016.06.27
  • Published : 2016.06.30

Abstract

In the preparation of Ag-coated Cu flakes using L-ascorbic acid as a reductant for the electroless Ag plating, the effects of pretreatment methods and the reductant concentration on the uniformity of Ag coating layer and the anti-oxidation property of Ag-coated Cu flakes during the heating in air were evaluated. It was found that the removal degree of surface oxide layer during the pretreatment has great influence on the uniformity of Ag coating layer and the formation degree of hole defects in the flakes has slight effect on the anti-oxidation property of Ag-coated Cu flakes. It was also verified that the reductant concentration has great influence on the coverage uniformity and thickness of Ag coating, thus it was could be considered a main process parameter. When the reductant concentration was 0.04 M, high-quality Ag-coated Cu flakes was obtained. When the concentration increased to 0.06 M, however, the anti-oxidation property of Ag-coated Cu flakes became remarkably worse owing to remnant of Cu surface non-coated with Ag by the formation of pure Ag fine particles.

L-ascorbic acid 환원제를 사용하는 무전해 은도금 공정으로 Ag 코팅 Cu 플레이크를 제조하는 과정에서 전처리 방법 및 L-ascorbic acid의 농도에 따른 Ag 코팅층의 균일도 변화와 대기 중 승온에 따른 내산화 특성을 평가하였다. 전처리 방법에 따른 Cu 플레이크 표면 산화층의 제거 정도가 Ag 코팅층의 균일도에 큰 영향을 미치는 것을 관찰할 수 있었고, 플레이크에서의 홀 결함 발생정도도 Ag 코팅 Cu 플레이크의 내산화 특성에 다소 영향을 미쳤다. 또한 L-ascorbic acid 환원제의 농도는 Ag 코팅층의 생성 균일도 및 두께 등에 큰 영향을 미치는 대표 공정변수임을 확인할 수 있었는데, L-ascorbic acid의 농도가 0.04 M일 경우 가장 우수한 품질의 Ag 코팅 Cu 플레이크가 제조되었나, 농도를 0.06 M로 증가시킬 경우 미세한 순수 Ag 입자들의 생성으로 인해 Ag가 코팅되지 않은 Cu 표면 면적이 증가하면서 시료의 내산화 특성을 크게 감소시켰다.

Keywords

References

  1. D. Lu, Q. K. Tong and C. P. Wong, "Conductivity Mechanisms of Isotropic Conductive Adhesives (ICAs)", Proc. International Symposium on Advanced Packaging Materials, 2, IEEE (1999).
  2. L. Ye, Z. Lai, J. Liu and A. Tholen, "Effect of Ag Particle Size on Electrical Conductivity of Isotropically Conductive Adhesives", IEEE Trans. Electron. Packag. Manuf., 22(4), 299 (1999). https://doi.org/10.1109/6104.816098
  3. D. Lu, Q. K. Tong and C. P. Wong, "A Study of Lubricants on Silver Flakes for Microelectronics Conductive Adhesives", IEEE Trans. Compon. Packag. Technol., 22(3), 365 (1999). https://doi.org/10.1109/6144.796536
  4. H. Jiang, K. Moon, Y. Li and C. P. Wong, "Surface Functionalized Silver Nanoparticles for Ultrahigh Conductive Polymer Composites", 18(13), 2969 (2006). https://doi.org/10.1021/cm0527773
  5. W. Zeng, H. Wu, C. Zhang, F. Huang, J. Peng, W. Yang and Y. Cao, "Polymer Light-Emitting Diodes with Cathodes Printed from Conducting Ag Paste", Adv. Mater., 19, 810 (2007). https://doi.org/10.1002/adma.200602567
  6. R. Ma, S. Kwon, Q. Zheng, H. Y. Kwon, J. I. Kim, H. R. Choi and S. Baik, "Carbon-Nanotube/Silver Networks in Nitrile Butadiene Rubber for Highly Conductive Flexible Adhesives", Adv. Mater., 24, 3344 (2007).
  7. J. Krantz, K. Forberich, P. Kubis, F. Machui, J. Mina, Tobias Stubhan and C. J. Brabeca, "Printing High Performance Reflective Electrodes for Organic Solar Cells", Org. Electron., 17, 334 (2015). https://doi.org/10.1016/j.orgel.2014.12.016
  8. X. Xu, X. Luo, H. Zhuang, W. Li and B. Zhang, "Electroless Silver Coating on Fine Copper Powder and Its Effects on Oxidation Resistance", Mater. Lett., 57(24-25), 3987 (2003). https://doi.org/10.1016/S0167-577X(03)00252-0
  9. D. S. Jung, H. M. Lee, Y. C. Kang and S. B. Park, "Air-stable Silver-coated Copper Particles of Sub-micrometer Size', J. Colloid Interface Sci., 364(2), 574 (2011). https://doi.org/10.1016/j.jcis.2011.08.033
  10. J. Zhao, D. M. Zhang and J. Zhao, "Fabrication of Cu-Ag Core-Shell Bimetallic Superfine Powders by Eco-friendly Reagents and Structures Characterization", J. Solid State Chem., 184(9), 2339 (2011). https://doi.org/10.1016/j.jssc.2011.06.032
  11. H. T. Hai, J. G. ahn, D. J. Kim, J. R. Lee, H. S. Chung and C. O. Kim, "Developing Process for Coating Copper Particles with Silver by Electroless Plating Method", Surf. Coat. Technol., 201(6), 3788 (2006). https://doi.org/10.1016/j.surfcoat.2006.03.025
  12. R. Zhang, W. Lin, K. Lawrence and C. P. Wong, "Highly Reliable, Low Cost, Isotropically Conductive Adhesives Filled with Ag-coated Cu Flakes for Electronic Packaging Applications", Int. J. Adh. Adh. 30(6), 403 (2010). https://doi.org/10.1016/j.ijadhadh.2010.01.004
  13. Y. Peng, C. Yang, K. Chen, S. R. Popuri, C.-H. Lee and B.-S. Tang, "Study on Synthesis of Ultrafine Cu-Ag Core-Shell Powders with High Electrical Conductivity", Appl. Surf. Sci., 263(15), 38 (2012). https://doi.org/10.1016/j.apsusc.2012.08.066
  14. G. Kim, K.-M. Jung, J.-T. Moon and J.-H. Lee, "Electrical Resistivity and Thermal Conductivity of Paste Containing Ag-coated Cu Flake Filler", J. Microelectron. Packag. Soc., 21(4), 51 (2014).
  15. J. H. Kim and J.-H. Lee, "Effects of Pretreatment and Ag Coating Processes Conditions on the Properties of Ag-Coated Cu Flakes", J. Mater. Res., 24(11), 617 (2014).
  16. J. H. Kim and J.-H. Lee, "A Method for Application of Ammonium-based Pretreatment Solution in Preparation of Copper Flakes Coated by Electroless Ag Plating", J. Microelectron. Packag. Soc., 22(4), 57 (2015). https://doi.org/10.6117/KMEPS.2015.22.4.057
  17. X. Xu, X. Luo, H. Zhuang, W. Li and B. Zhang, "Electroless Silver Coating on Fine Copper Powder and Its Effects on Oxidation Resistance", Mater. Lett., 57(24-25), 3987 (2003). https://doi.org/10.1016/S0167-577X(03)00252-0
  18. D. S. Jung, H. M. Lee, Y. C. Kang and S. B. Park, "Air-stable Silver-coated Copper Particles of Sub-micrometer Size', J. Colloid Interface Sci., 364(2), 574 (2011). https://doi.org/10.1016/j.jcis.2011.08.033
  19. J. Zhao, D. M. Zhang and J. Zhao, "Fabrication of Cu-Ag Core-Shell Bimetallic Superfine Ppowders by Eco-friendly Reagents and Structures Characterization", J. Solid State Chem., 184(9), 2339 (2011). https://doi.org/10.1016/j.jssc.2011.06.032
  20. G.-M. Shi, J.-K. Han, Z.-D. Zhang, H.-Y. Song and B.-T. Lee, "Pretreatment Effect on the Synthesis of Ag-coated $Al_2O_3$ Powders by Electroless Deposition Process", Surf. Coat. Technol., 195(2-3), 333 (2005). https://doi.org/10.1016/j.surfcoat.2004.08.186
  21. W. X. Zhang, J. G. He, Z. H. Jiang, Q. Jiang and J. S. Lian, "Electroless Ni-P Layer with a Chromium-free Pretreatment on AZ91D Magnesium Alloy", Surf. Coat. Technol., 201(8), 4594 (2007). https://doi.org/10.1016/j.surfcoat.2006.09.312
  22. L.-M. Luo, Z.-L. Lu, X.-Y. Tan, X.-Y. Ding, L.-M. Huang, J.-G. Cheng, L. Zhu and Y.-C. Wu, "A Specific Chemical Activation Pretreatment for Electroless Nickel Plating on SiC Ceramic Powders", Powder Technol., 249, 431 (2013). https://doi.org/10.1016/j.powtec.2013.08.039
  23. J. Xiong, Y. Wang, Q. Xue and X. Wu, "Synthesis of Highly Stable Dispersions of Nanosized Copper Particles Using Lascorbic Acid", Green Chem., 13, 900 (2011). https://doi.org/10.1039/c0gc00772b
  24. Y. M. Shin and J.-H. Lee, "Preparation of Sub-micrometer Cu Particles by Green Hydrothermal Synthesis under Air", Electron. Mater. Lett., 11(3), 404 (2015). https://doi.org/10.1007/s13391-015-4452-z
  25. G.-L. Song, R. Mishra and Z. Xu, "Crystallographic Orientation and Electrochemical Activity of AZ31 Mg Alloy", Electrochem Comm., 12(8), 1009 (2010). https://doi.org/10.1016/j.elecom.2010.05.011
  26. A. Muzikansky, P. Nanikashvili, J. Grinblat and D. Zitoun, "Ag Dewetting in Cu@Ag Monodisperse Core-Shell Nanoparticles", J. Phys. Chem. C, 117(6), 3093 (2013). https://doi.org/10.1021/jp3109545
  27. C.-H. Tsai, S.-Y. Chen, J.-M. Song, I.-G. Chen and H.-Y. Lee, "Thermal Stability of Cu@Ag Core-Shell Nanoparticles", Corros. Sci., 74(Sep), 123 (2013). https://doi.org/10.1016/j.corsci.2013.04.032
  28. S.-S. Chee and J.-H. Lee, "Preparation and Oxidation Behavior of Ag-coated Cu Nanoparticles Less Than 20 nm in Size", J. Mater. Chem. C, 2(27), 5372 (2014). https://doi.org/10.1039/c4tc00509k
  29. M. J. Dignam and D. B. Gibbs, "Anodic Oxidation of Copper in Alkaline Solution", Can. J. Chem., 48(8), 1242 (1970). https://doi.org/10.1139/v70-205
  30. N. S. Mclntyre, S. Sunder, D. W. Shoesmith and F. W. Stanchell, "Chemical Information from XPS-Applications to the Analysis of Electrode Surfaces", J. Vac. Sci. Tech., 18, 714 (1981). https://doi.org/10.1116/1.570934
  31. D. W. Shoesmith, S. Sunder, M. G. Bailey, G. J. Wallace and F. W. Stanchell, "Anodic Oxidation of Copper in Alkaline Solutions: Part IV. Nature of the Passivating Film", J. Electroanal. Chem., 143(1-2), 153 (1983). https://doi.org/10.1016/S0022-0728(83)80261-7

Cited by

  1. Antioxidation Behavior of Submicron-sized Cu Particles with Ag Coating vol.23, pp.3, 2016, https://doi.org/10.6117/kmeps.2016.23.3.051
  2. 두꺼운 Ag shell이 형성되는 40 wt.% Ag 코팅 Cu 입자의 제조 및 입자 내 결함 억제 vol.24, pp.4, 2016, https://doi.org/10.6117/kmeps.2017.24.4.065