DOI QR코드

DOI QR Code

Study on the surface modification of zirconia with hydrophilic silanes

친수성기를 가진 실란을 이용한 지르코니아의 표면의 개질 연구

  • Lee, Soo (Department of Chemical Engineering, Changwon National University) ;
  • Moon, Sung Jin (Department of Chemical Engineering, Changwon National University)
  • 이수 (창원대학교 화공시스템공학과) ;
  • 문성진 (창원대학교 화공시스템공학과)
  • Received : 2016.05.14
  • Accepted : 2016.05.23
  • Published : 2016.06.30

Abstract

Since microzirconia has excellent thermal and mechanical properties with high chemical and electrical resistance, it can be used in various fields. When the surface of zirconia becomes hydrophilic, its dispersibility in water will be improved as well as the resistance to most hydrophobic contaminants will be increased. In this study, we investigated the introduction of a hydrophilic groups on the microzircornia surface through hydrolysis and condensation reactions with two different silanes containing hydrophilic functional groups, such as ${\gamma}$-aminopropyltrimethoxysilane (APS) and ${\gamma}$-ureidopropyltrimethoxysilane (UPS) at different pH and concentration conditions. A covalent bond formation between the surface hydroxyl groups of zirconia and that of hydrolyzed silanes was confirmed by ninhydrin test and FT-IR spectroscopy. However, the presence of Si on the surfaces of both silane modified microzirconias was unable to detect by SEM/EDS technique. In addition, particle size analysis results provide that the size of microzirconia was changed to smaller or bigger than that of original zirconia due to crushing and aggregation during the modification process. The water dispersibility was improved for only APS modifed zirconia (AS-2 and AS-3) under neutral pH condition, but the water dispersibility and stability for all cases of 0.5~2% UPS modifed zirconia (US series) were much improved.

마이크로지르코니아는 높은 내약품성, 높은 전기저항성 등의 우수한 열적 기계적 성질을 가지므로 다양한 분야에 사용되어 진다. 또한 지르코니아 표면을 친수화시키면, 물에 대한 분산성이 우수하여 분산이 용이할 뿐만 아니라 대부분의 오염물질은 소수성을 띄기 때문에 오염물질에 대한 저항성을 높일 수도 있다. 본 연구에서는 지르코니아 표면에 ${\gamma}$-aminopropyltrimethoxysilane (APS)을 사용하여 서로 다른 pH 조건에서의 가수분해와 축합반응을 통한 친수성기의 도입과 물에 대한 분산성을 조사하고 ${\gamma}$-ureidopropyltrimethoxysilane (UPS)을 사용한 결과와도 비교하였다. 친수화로 개질된 마이크로지르코니아에의 지르코니아 표면의 수산기와 가수분해된 실란의 수산기와의 공유결합의 존재는 FT-IR ATR spectroscopy 및 ninhydrin 반응을 통해 확인하였다. 그러나, SEM/EDS의 결과로는 지르코니아 표면에 도입된 Si의 존재는 확인할 수 없었다. 또한, 입도 분석 결과 마이크로지르코니아는 개질 반응 중 일부 입자의 파쇄 및 aggregation이 일어남을 알 수 있었다. APS로 개질한 경우 pH가 중성일 때 수분산성이 향상되었으나, 0.5~2% 농도의 UPS로 개질된 경우는 모든 경우 수분산성이 향상되며 분산안정성도 우수하였다.

Keywords

References

  1. H. J. Noh, J. K. Lee, D. S. Seo and K. H. Hwang, Preparation of Zirconia Nanocrystaline Powder by the Hydrothermal Treatment at Low Temperature, J. Kor. Cer. Soc., 39(3), 308-314 (2002). https://doi.org/10.4191/KCERS.2002.39.3.308
  2. C. H. Han and S. J. Kim, Preparation of Nano-sized Zirconia Powders by the Impregnation Method,J. Kor. Cer. Soc., 49(5), 454-460 (2012). https://doi.org/10.4191/kcers.2012.49.5.454
  3. H. Yoon, M. Y. Shin and J. J. Ahn, Properties of Yttria Partially Stabilized Zirconia Nano-Powders Prepared by Coprecipitation Method, J. Miner. Soc. Korea, 19(2), 81-88 (2006).
  4. H. Yoon, C. S. Park, M. Y. Shin and J. J. Ahn, A Study on Characterization and Synthesis of Nano-sized Zirconia Powders, Petrological Society of Korea and Mineralogical Society of Korea, 48-52 (2004).
  5. B. H. Kim, K. Hong and D. W. Shin, A study on the Improvement of Oxidation and Corrosion Resistance of Stainless Steel by Sol-Gel Ceramic Coating; (1) Synthesis of Zirconia Sol and Fabrication of Its Thin Film, J. Kor. Cer. Soc., 31(9), 1060-1068 (1994).
  6. H. J. Lee, T. N. Kim, S. C. Bea, M. W. Go and J. K. Ryu, Hydrothermal Synthesis and Mechanical Characterization of $ZrO_2$ by $Y_2O_3$ Stabilizer Contents, Kor. J. Mater. Res., 20(10), 518-523 (2010). https://doi.org/10.3740/MRSK.2010.20.10.518
  7. H. J. Lee, M. W. Go and T. N. Kim, Hydrothermal Synthesis and Mechanical Characterization of 3mol%$Y_2O_3$-$ZrO_2$ by Urea Contents, Kor. J. Mater. Res., 21(8), 425-431 (2011). https://doi.org/10.3740/MRSK.2011.21.8.425
  8. G. G. Hong and H. L. Lee, Properties of $Al_2O_3$-15v/o $ZrO_2$(+3m/o Y2O3) Powder Prepared by Co-Precipitation Method, J. Kor. Cer. Soc., 26(2), 210-220 (1989).
  9. Fujifilm Cor., U. S. Patent Appl. 20160118253 (2016).
  10. Asahi Glass Co., U. S. Patent Appli. 20160096975 (2016).
  11. DAI NIPPON PRINTING Co.. United States Patent Application 20160103262
  12. T. Meng, R. Xie, X-J. Ju, C-J. Cheng, S. Wang, P-F. Li, and et al., Nano-structure Construction of Porous Membranes by Depositing Nanoparticles for Enhanced Surface WettAbility, J. Membrane Sci., 427, 63-72 (2013). https://doi.org/10.1016/j.memsci.2012.09.051
  13. R. S. Faibish, and Y. Cohen, Foulingresistant Ceramic-supported Polymer Membranes for Ultrafiltration of Oil-inwater Microemulsions, J. Membrane Sci., 185, 129-143 (2001). https://doi.org/10.1016/S0376-7388(00)00595-0
  14. P. Klonos, I. Y. Sulym, K. Kyriakos, I. Vangelidis, S. Zidropoulos, D. Sternik, M. V. Borysenko, A. Kyritsis, A. Derylo-Marczewska, V. M. Gun'ko, and P. Pissis, Interfacial phenomena in coreeshell nanocomposites of PDMS adsorbed onto low specific surface area fumed silica nanooxides: Effects of surface modification, Polymer, 68 (2015) 158-167. https://doi.org/10.1016/j.polymer.2015.05.017
  15. L-H. Zhang, L-J. Gao, and X-Q. Li, Experimental Research on Chemical Modification for Nano Zirconia Surface, Hydrometallurgy of China, 31(3), 184-186 (2012).
  16. L-H. Zhang, L-J. Gao, and X-Q. Li, Research on Stability of Aqueous Disperse System of Nano Zirconia Modified by Adipic Acid, Hydrometallurgy of China, 32(3), 194-196(2013).