DOI QR코드

DOI QR Code

Research regarding curcumin and soybean extract's influence on anti-inflammatory and acne and skin-repairing effect on RAW 264.7 macrophages

커큐민과 대두 추출물의 RAW 264.7 대식세포에서의 항염증 효과 및 여드름 피부 개선효과에 관한 연구

  • Received : 2016.05.02
  • Accepted : 2016.06.20
  • Published : 2016.06.30

Abstract

By studying bioactivity in the aspect of skin care via curcumin, the main component of turmeric, and isoflavones, the soybean extract, this research tried to prove the possibilities as cosmetic ingredients. This research identified the curcumin and soybean extract's anti-inflammatory and toxic effects on skin cells through cell experiment, and using HPLC, the moisture, oiliness, and changes in erythema were measured when the soybean extract was applied to the skin. The result showed that curcumin had the least toxin on RAW 264.7 cell and the anti-inflammatory effect was identified. There were statistically significant changes on the moisture, oiliness and erythema when cosmetics containing curcumin and soybean extract were used. Therefore, it showed the possibilities of the utilization of curcumin and soybean extract to be used as cosmetics for acne skin.

울금의 주요 성분인 커큐민과 대두 추출물인 이소플라본의 피부 미용 측면에서 생리활성을 연구하여 화장품 소재로서 가능성 여부를 규명하고자 하였다. 본 연구는 세포실험을 통해 커큐민과 대두 추출물을 피부 세포에 대한 독성 및 항염증을 확인하고, HPLC을 이용하여 대두 추출물의 성분분석과 피부에 적용하였을 때 수분과 유분, 홍반변화를 측정하였다. 본 연구 결과 커큐민이 RAW 264.7 세포에 대한 독성이 적은 것으로 확인되었으며, 항염증에 대한 효과를 확인하였다. 8주 동안 커큐민과 대두 추출물이 함유된 화장품과 식이를 병행하여 사용하였을 때 수분함량 변화, 유분함량 변화, 홍반 지수의 감소가 통계적으로 유의미한 변화를 나타내었으며, 여드름 피부에 유의한 효과를 가질 수 있음을 확인하였다. 따라서 본 연구는 커큐민과 대두 추출물이 화장품 소재로 사용 시 여드름 피부 개선에 효과적인 화장품 소재로서 활용 가능성이 있을 것으로 사료된다.

Keywords

References

  1. S. Park, Skin barrier and beauty foods. Food. Sci., 40, 19-26(2008).
  2. H. Armold, R. Odom, W. James, Andrew's Diseases of the skin, Clinical dermatology, 8th Ed. WB Saunders Co. Philadelphia, pp 250-258(1990).
  3. C. Kim, H. Lee, Microorganism isolated from acne and their antibiotic susceptibility. Kor. J. Dermatol., 43, 871-875(2005).
  4. J. Lee, D. Chang, Suh K, S, Sung, E. Lee. The relapse rate after 1year treatment with oral isotrtinoin in Korean Patients with mild to moderate acnes. Kor. J. Dermatol., 42, 675-681(2004).
  5. C. Kim, H. Lee, Microorganism isolated from acne and their antibiotic susceptibility. Kor. J. Dermatol., 43, 871-875(2005).
  6. D. Knigh, J. Eden, review of the clinical effects of phytoestrogens. Obstet. Gynecol., 87, 897-904(1996).
  7. S. Binghan, C. Aykinson, J. Liggins, L. Bluck, A. Coward, phytooestrogens, where are we now. Br. J. Nutr., 79, 393-406 (1998). https://doi.org/10.1079/BJN19980068
  8. A. Cassidy, Physiological effect of phyto-oestrogens in relation cancer and other human health risks, Proc. Nutr. Soc., 55, 399-417(1996). https://doi.org/10.1079/PNS19960038
  9. L. King, B. Carr, Phytoestrogens, Fact and Fiction, Patient care(March)., 127-143 (1999).
  10. R. Koslak, R. Bookland, J. Bakei, H. Paaren, E. Appelbaum, Induction of Bradirhizobium japonicum coummon nod genes by isoflavones isolated from Glycine max. Proc, Natl. Acad. Sci., 84, 7428-7432(1987). https://doi.org/10.1073/pnas.84.21.7428
  11. F. Morris, M. Savard, E. Ward, Identification and accumulation of isoflavones and isoflavone glucosides in soybean leaves and hypocotyls in resistance responses to Phytophthora megasperma f.sp. glycinea, Physiol. Molecular. Plant. Pathol., 39, 229-224(1991). https://doi.org/10.1016/0885-5765(91)90006-4
  12. S. Park, Skin barrier and beauty foods. Food. Sci., 40, 19-26(2008).
  13. M. J. Lee, C. Y. Sohn, O. J. Park, Relation between Health Status and Intake of Soy Isoflavone among Adult Women in Seoul. J. East Asian Soc Dietary Life., 20(2), 218-230(2010).
  14. F. M. Sacks, A. Lichtenstein, L. Van Horn, W. Harris, P. Kris-Etherton, M. Winston. Soy protein, isoflavones, and cardiovascular health. An American Heart Association Science Advisory for Professionals from the Nutrition Committee. Circulation., 113, 1034-1044 (2006). https://doi.org/10.1161/CIRCULATIONAHA.106.171052
  15. C. W. Xiao, Health effects of soy protein and isoflavones in Humans. J. Nutr., 138, 1244-1249(2008). https://doi.org/10.1093/jn/138.6.1244S
  16. S. Choi, Y. Kim, M. Choi, H. Rang, Y. Ahn and Yun, Screening of 5a-reductase inhibition and comedolytic effects from natural products. Yakhak. Hoeji., 43, 342-350(1999).
  17. A. Sharma, J. Gescher, P. Steward. Curcumin The story so far. Eur. J. Cancer., 41, 1995-1968(2005).
  18. R, Selvam. L, Subramanian. R, Gayathri. N. Angayarkanni. The antioxi dent activity of turmeric (Curcuma longa).Journal of Ethnophar. macol. ogy., 47, 59-67(1995). https://doi.org/10.1016/0378-8741(95)01250-H
  19. A. Sharma, J. Gescher, P. Steward, Curcumin The story so far. Eur. J. Cancer., 41, 1995-1968(2005).
  20. D. C. Kim, P. Song. Molecular Docking Affinity Comparison of Curcumin and Nano-micelled Curcumin with Natural Sea Salt on Transthyretin. Journal of Life Science., 26(2), 253-258(2016). https://doi.org/10.5352/JLS.2016.26.2.253
  21. I. Calzuola, F. Giavarini, P. Sassi, L. De Angelis, G. L. Gianfranceschi, V. Marsili, Short acidic peptides isolated from wheat sprout chromatin and involved in the control of cell proliferation: Characterization by infrared spectroscopy and mass spectrometry. Peptides., 26(11), 2074-2085(2005). https://doi.org/10.1016/j.peptides.2005.04.008
  22. Y. L. Binta, K. Hiroshi, H. S. Lee, Y. K. Kang, J. Y. Park, M. Yang, Inhibition by wheat sprout (Triticum aestivum) juice of bisphenol A-induced oxidative stress in young women, Mutat. Res., 724, 64-68(2011). https://doi.org/10.1016/j.mrgentox.2011.06.007
  23. C. Nathan, S. H. Snyder, Nitric oxide synthases : roles, tolls, and controls. Cell., 78, 915-916(1994). https://doi.org/10.1016/0092-8674(94)90266-6
  24. S. Balasubramanian, R. Eckert. Kerationcyte proliferation, differentiation, and apoptosis-differential mechanisms of regulation by curcumin, EGCG and apigenin. Toxicol. Appl. Pharmaco., 224, 314-219(2007).
  25. S. Balasubramanian, R. Eckert. Curcumin suppresses AP1 transcription factordepependent differentiation and activates apoptosis in human epidermal keratinocytes. J. Biol. Chem., 282, 6707-6715(2006). https://doi.org/10.1074/jbc.M606003200
  26. E. Borenfreund, J. A. Puemer. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicology. Letters., 24, 119-124(1985). https://doi.org/10.1016/0378-4274(85)90046-3
  27. C. L. Green stork, Radiation and aging free radical damage, biological response and possible antioxidant intervention. Med. Hypotheses., 41, 473(1993). https://doi.org/10.1016/0306-9877(93)90131-9
  28. R. A. Korhonen, H. E. Lahti Kankaanranta, Moilanen, Nitric oxide production and signaling in inflammation. Curr. J. Drug Targets, Inflamm. Allergy., 4, 471(2005). https://doi.org/10.2174/1568010054526359
  29. J. MacMicking, Q. W. Xie, C. Nathan. Nitric oxide and macrophage function. Annu Rev Immunol., 15, 323(1997). https://doi.org/10.1146/annurev.immunol.15.1.323
  30. P. Forsythe, M. Gilchrist, M. Kulka, A. D. Befus, Mast cells and nitric oxide: control of production, mechanisms of response. Int. Immunopharmacol., 1(8), 1525(2001). https://doi.org/10.1016/S1567-5769(01)00096-0
  31. H. P. Kim, K. H. Son, S. S. Kang. Anti-inflammatory plant flavonoids and cellular action mechanisms. J. Pharmacological. Sci., 96, 229-245(2004). https://doi.org/10.1254/jphs.CRJ04003X
  32. D, S. Bredt, S, H. Snyder. A physiologic messenger molecule. Annu Rev. Riochem., 63, 175-195(1994). https://doi.org/10.1146/annurev.bi.63.070194.001135