DOI QR코드

DOI QR Code

The Characterization and Coatings on 304 Stainless Steel by Laser Induced Fluorescence Spectroscopy using the High Resolution Charge Coupled Device

레이저 유도형광분광기에서 고정밀 전하장치를 이용한 304 스테인레스 스틸의 코팅과 특성

  • Kim, Ki-Jun (Dept. of Chemical Engineering, Daejin University) ;
  • Lee, Jou-Youb (Dept. of Disaster Mitigation and Safety Engineering, Jungwon University) ;
  • Sung, Wan-Mo (Dept. of Disaster Mitigation and Safety Engineering, Jungwon University)
  • Received : 2016.03.04
  • Accepted : 2016.06.27
  • Published : 2016.06.30

Abstract

In our study, ceramics coatings by additives of nano alumina and magnesia have cured on 304 stainless steel at $170^{\circ}C$ 2h. We designed and experimented the coated specimens that were characterized by laser induced fluorescence spectroscopy using the charge coupled device and scanning electronic microscopy(SEM). The result was revealed the ceramic coatings added fillers has more excellent on adhesive property and scratch resistance, and less weight loss in acid solution than ceramic coatings non-added fillers. Therefore, this study has designed and manufactured the electromagnetic spectrometry with CCD and then analyzed the coatings on 304 stainless steel using the High Resolution Charge Coupled Device in improving the corrosion resistance of 304 stainless steel. Nowadays, coatings of stainless steel have increased by industrial demand in hygienes, aviation, instrumentations and robotics as the industry special application develops.

연구에서 나노 알루미나와 마그네지아의 첨가에 의한 304 스테인레스 스틸에 $170^{\circ}C$ 2시간 열 경화시켰다. 레이저유도 분광학에 의한 코팅된 시료를 전하결합 장치와 SEM을 활용한 장치를 설계하여 시험 측정하였다. 이 결과 나노 알루미나와 마그네지아가 함유된 세라믹 코팅이 나노 무기화합물이 함유되지 않은 시료보다 부착성, 내스크래치성이 우수하였으며, 또한 산용액속에서 시료의 질량감소의 변화가 매우 작았다. 그리하여 본 연구는 304 스테인레스 스틸의 내부식성을 개선하기 위해 시료가 코팅되었으며, 분석공정이 설계되어 고분해능 CCD와 함께 분석되었다. 요즈음, 스테인레스 스틸의 코팅은 산업에 특이응용이 발전됨에 따라 위생학, 우주항공, 기기장치, 관측 등의 분야 등에 산업적 요구가 증가되고 있다.

Keywords

References

  1. K. J. Kim and K. C. Sung, A Study on Spectra of Laser Induced Fluorscence in Phantom, J. of Korean Oil Chemist' Soc,, 16(4), 329 (1999).
  2. K. J. Kim and K. C. Sung, Monte Carlo Simulation on Light Distribution in Turbid Material, J. of Korean Oil Chemists Soc., 15(4), 11 (1998).
  3. K. J. Kim and K. C. Sung, Studies on Measurements of Optical Parameters in Turbid Material by Light Scattering, J. of Korean Oil Chemists Soc., 12(2), 151 (1995).
  4. S. L. Jacques and S. A. Prahl, Modeling Octical and Thermal Distribution in Tissue During Laser Irradiation, Laser in Surgery and Medicine 6, 494 (1987). https://doi.org/10.1002/lsm.1900060604
  5. B. C. Wilson, Y. D. Park, Y. Hefetz, M. S. Patterson, S. J. Madsen and S. L. Jacques, The Potential of Timeresolved Reflectance Measurements for the Noninvasive Determination of Tissue Optical Properties, in Thermal and Optical Interactions with Biological and Related Composite Materials, M. J. Berry and G. M. Harpole, eds., Proc. S. P. I. E., p. 97, (1989).
  6. S. L. Jacques, C. A. Alter, and S. A. Prahl, Angular Dependence of HeNe Laser Light Scattering by Human Dermis, Laser in the Life Science, 1(4), 309 (1987).
  7. T. J. Dougherty, C. J. Gomer, and K. R. Weishaupt, Energetics and Effeciency of Photoinactivation of Murine Tumor Cells Containing Hematoporphyrin, Cancer Research 36, 2330 (1976).
  8. R. R. Alfano, G. C. Tang, A. Pradhan, W. Ran, S. J. Daniel, ,and E Opher, Fluorescence Spectro from Cancerone and Normal Human Breast and Lung Tissues, IEEE J. Quan. Elec. QE, 23(10), 1806 (1987). https://doi.org/10.1109/JQE.1987.1073234
  9. S. R. Wickramasinghe, Y. Wu, and B. Han, Enhanced Microfiltration of Yeast by Flocculation, Desalination 147, 25, (2002). https://doi.org/10.1016/S0011-9164(02)00566-0
  10. L. O. Poicard, C. J. Gomer, and A. E. Profio, Laser-Induced Hyperthermia of Ocular Tumors, Appl. Opt., 28(12), 2318 (1989). https://doi.org/10.1364/AO.28.002318
  11. M. Winkelmann, B. Chance, and B. C. Wilson, Time Resolved Reflectance and Transmittanance for the Noninvasive Measurement of Tissue Optical Properties, Appl. Opt., 28(12), 2331 (1989). https://doi.org/10.1364/AO.28.002331
  12. K. Lee, I. J. Forbes, and W. H. Betts, Oxygen Dependency of Photocytotoxicity with Hematoporphyrin Derivative, Photochem. Photobiol 39(5), 631 (1984). https://doi.org/10.1111/j.1751-1097.1984.tb03902.x
  13. R. Hilf, P. B. Leakey, S. J. Solltt, and S. L. Gibson, Photodynamic Inactivation of R3230AC Mammary Carcinoma in vitro with HPD: Effects of Dose, Time and Serum on Uptake and Phototoxicity, Photochem. Photobiol. 37(6), 633 (1983). https://doi.org/10.1111/j.1751-1097.1983.tb04532.x
  14. H. Schnecknburger, M. Frenz, Y. Tsnchiya, U.. Denzer, and L. Schleinkofer, Picosecond Fluorescence Microscopy for Measuring Chlorophyll and Porphyrin Components in Conifers and Cultured Cells, Lasers in the Life Science 1(4), 299 (1987).
  15. S. R. Wickramasinghe, Y. Wu, and B. Han, Enhanced Microfiltration of Yeast Flocculation, Desalination, 147, 25(2002). https://doi.org/10.1016/S0011-9164(02)00566-0